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Abstract

Multiplicative weight-updating algorithms
such as Winnow have been studied exten-
sively in the COLT literature, but only re-
cently have people started to use them in
applications. In this paper, we apply a
Winnow-based algorithm to a task in natu-
ral language: context-sensitive spelling cor-
rection. This is the task of fixing spelling
errors that happen to result in valid words,
such as substituting fo for too, casual for
causal, and so on. Previous approaches to
this problem have been statistics-based; we
compare Winnow to one of the more suc-
cessful such approaches, which uses Bayesian
classifiers. We find that: (1) When the stan-
dard (heavily-pruned) set of features is used
to describe problem instances, Winnow per-
forms comparably to the Bayesian method;
(2) When the full (unpruned) set of features
is used, Winnow is able to exploit the new
features and convincingly outperform Bayes;
and (3) When a test set is encountered that is
dissimilar to the training set, Winnow is bet-
ter than Bayes at adapting to the unfamiliar
test set, using a strategy we will present for
combining learning on the training set with
unsupervised learning on the (noisy) test set.

1 INTRODUCTION

Multiplicative weight-updating algorithms such as
Winnow [Littlestone, 1988] and Weighted Majority
[Littlestone and Warmuth, 1994] have been studied ex-
tensively in the COLT literature. Theoretical analysis
has shown that they have exceptionally good behavior
in the presence of irrelevant attributes, noise, and even
a target function changing in time [Littlestone, 1988;
Littlestone and Warmuth, 1994; Herbster and War-
muth, 1995]. We address these claims empirically by
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applying a new algorithm which combines variants of
Winnow and Weighted Majority to a large-scale real-
world task: context-sensitive spelling correction.

Context-sensitive spelling correction is the task of fix-
ing spelling errors that result in valid words, such as
It’s not to late, where too was mistakenly typed as to.
These errors account for anywhere from 25% to over
50% of observed spelling errors [Kukich, 1991]; yet
they go undetected by conventional spell checkers,
such as Unix spell, which only flag words that are not
found in a word list. The challenge of this task (and
related natural language tasks) for Machine Learning
is to characterize the contexts in which a word can (or
cannot) occur in terms of features. The problem is that
there is a multitude of features one might use: features
that test for the presence of a particular word nearby
the target word; features that test the pattern of parts
of speech around the target word; and so on. For the
tasks we will consider, the number of features ranges
from a few hundred to over 10,000." Most machine-
learning algorithms, such as C4.5, do not scale up well
to such large feature sets; the task therefore provides
an excellent testbed for studying the performance of
multiplicative weight-updating algorithms on a real-
world task with large numbers of features.

To evaluate the proposed Winnow-based algorithm,
which we call WinnowS, we compare it against Bayes
[Golding, 1995], a statistics-based method that is
among the most successful methods tried for the prob-
lem. We first compare WinnowS and Bayes using the
heavily-pruned feature set that Bayes normally uses
(typically 10-1000 features). WinnowS is found to
perform comparably to Bayes under this condition.
When the full, unpruned feature set is used, however,
WinnowS comes into its own, achieving substantially
higher accuracy than it achieved in the pruned condi-
tion, and better accuracy than Bayes achieved in either
condition.

!'We have tested successfully with up to 40,000 features,
but the results reported here use up to 11,000.



We then address the issue of dealing with a test set
that is dissimilar to the training set. This arises in
context-sensitive spelling correction because patterns
of word usage can vary widely across documents; thus
the test and training documents may be quite different.
To deal with this, we adopt a strategy of combining
learning on the training set with unsupervised learning
on the (noisy) test set. Using this strategy, WinnowS is
found to be convincingly better than Bayes at adapting
to unfamiliar test sets.

The rest of the paper is organized as follows: the next
sections describe the task of context-sensitive spelling
correction, and the Bayesian method that has been
used for it. The Winnow-based approach to the prob-
lem is then introduced. The experiments on Winnow$S
and Bayes are presented. The final section concludes.

2 CONTEXT-SENSITIVE
SPELLING CORRECTION

Context-sensitive spelling correction is taken here to
be a task of word disambiguation. The ambiguity
among words is modelled by confusion sets. A confu-
sion set C' = {W7y,..., W,,} means that each word W;
in the set is ambiguous with each other word. Thus if
C ={hear, here}, then when we see an occurrence of
either hear or here in the target document, we take
it to be ambiguous between hear and here; the task
is to decide from the context which one was actually
intended. Acquiring confusion sets is an interesting
problem in its own right; in the work reported here,
however, we will just take our confusion sets from the
list of “Words Commonly Confused” in the back of the
Random House dictionary [Flexner, 1983].

The Bayesian and Winnow-based methods for spelling
correction will be described below in terms of their
operation on a single confusion set; that is, we will
say how they disambiguate occurrences of words W;
through W,,. The methods handle multiple confusion
sets by applying the same technique to each confusion
set independently.

3 BAYESIAN APPROACH

A number of methods have previously been tried
for context-sensitive spelling correction, including
trigrams [Mays et al., 1991], Bayesian classifiers
[Gale et al., 1993], decision lists [Yarowsky, 1994]
Bayesian hybrids [Golding, 1995], and, more recently,
a combination of trigrams and Bayesian hybrids
[Golding and Schabes, 1996]. The Bayesian hybrid
method, which we call Bayes, has been among the most
successful, and is thus the method we adopt here as
the benchmark for comparison with WinnowS. Bayes
has been described elsewhere [Golding, 1995], and so

will only be briefly reviewed here; however, the ver-
sion used here uses an improved smoothing technique,
which is mentioned briefly below.

To disambiguate words Wi through W, , Bayes starts
by learning features that characterize the context in
which each W; tends to occur. It uses two types of
features: context words and collocations. Context-
word features test for the presence of a particular
word within +k words of the target word; colloca-
tions test for a pattern of up to ¢ contiguous words
and/or part-of-speech tags? around the target word.
In the experiments reported here, k& was set to 10 and
£ to 2. Examples of features for the confusion set
{weather, whether} include:

(1)  cloudy within £10 words
(2) __to VERB

where (1) is a context-word feature that tends to imply
weather, and (2) is a collocation that checks for the
pattern “to VERB” immediately after the target word,
and tends to imply whether (asin I don’t know whether
to laugh or cry).

Bayes learns these features from a training corpus of
correct text. Each time a word in the confusion set oc-
curs, Bayes proposes every feature that matches that
context (one context-word feature for every distinct
word within £k words, and one collocation for every
way of expressing a pattern of up to ¢ contiguous el-
ements). After working through the whole training
corpus, Bayes tallies the number of times each feature
was proposed. It then prunes features for two reasons:
(1) the feature occurred in practically none or all of
the training instances (specifically, it had fewer than
10 occurrences or fewer than 10 non-occurrences); or
(2) the presence of the feature is not significantly corre-
lated with the identity of the target word (determined
by a chi-square test at the 0.05 significance level).

The set of learned features is used at run time to clas-
sify an occurrence of a word in the confusion set. All
the features are compared against the target occur-
rence; let F be the set of features that match. Suppose
for a moment that we were applying a naive Bayesian
approach. We would then calculate the probability
that each word W; in the confusion set is the correct
identity of the target word, given that we have ob-
served features F, by using Bayes’ rule with the inde-
pendence assumption:

PWi)

Pz = P()

IT priwi)
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?Each word in the sentence is tagged with its set of
possible part-of-speech tags, obtained from a dictionary.
For a tag to match a word, the tag must be a member of
the word’s tag set.



where each probability on the right-hand side is calcu-
lated by a maximum-likelihood estimate (MLE) over
the training set. We would then pick as our answer
the W; with the highest P(WW;|F). The method pre-
sented here differs from the naive approach in two re-
spects: first, it does not assume independence among
features, but rather has heuristics for detecting strong
dependencies, and resolving them by deleting features
until it is left with a reduced set F' of (relatively)
independent features, which are then used in place
of F in the formula above. Second, to estimate the
P(f|W;) terms, rather than using a simple MLE, it
performs smoothing by interpolating between the MLE
of P(f|W;) and the MLE of the unigram probability,
P(f). These enhancements greatly improve the per-
formance of Bayes over the naive Bayesian approach.

4 WINNOW-BASED APPROACH

The approach presented in this section is being devel-
oped as part of a research program in which we are
trying to understand how networks of simple and slow
neuron-like elements can encode a large body of knowl-
edge and perform a wide range of interesting inferences
almost instantaneously [Khardon and Roth, 1994;
Roth, 1996a]. In particular, we investigate this ques-
tion in a system developed for the purpose of learn-
ing knowledge representations for natural language un-
derstanding tasks [Roth, 1996b]. In the following we
briefly present the general approach and then concen-
trate on the task at hand, context-sensitive spelling
correction.

The approach developed is influenced by the Neuroidal
system suggested in [Valiant, 1994]. The system con-
sists of a very large number of items, in the range of
105. These correspond to so-called high-level concepts,
for which humans have words, as well as to lower-level
predicates from which higher-level ones are composed.
The knowledge representation is a large network of
threshold gates, in which every concept is defined as a
function of other nodes. More specifically, every con-
cept is represented as a cloud of nodes in the net-
work. While each node in this cloud learns its depen-
dence on other nodes in the network autonomously,
all the cloud’s members take part in any decision with
respect to the concept. A continuous learning ap-
proach [Valiant, 1995] is used to learn and maintain®
the knowledge representation. FEach interaction with

*For the purpose of this experimental study, except
when specifically mentioned, we do not update the knowl-
edge representation while testing, even though the infor-
mation is available to the learning algorithm. This is done
to provide a fair comparison with the Bayesian method
which is a batch approach.

the world, e.g., reading a sentence of text, is viewed
as a positive example of a few of these items and a
negative example for all the others. Each example is
thus used once by all the items to learn and refine
their definition in terms of the others [Valiant, 1995;
Roth, 1995], and is then discarded. Local learning
algorithms are used at each node: a variant of Little-
stone’s Winnow algorithm [Littlestone, 1988] is used
by each node to learn its dependence on other nodes,
but different members of a concept cloud run this al-
gorithm with different parameters. A decision with
respect to the concept represented by the cloud is
reached via a variant of the Weighted Majority algo-
rithm [Littlestone and Warmuth, 1994].

For the current task, we keep a node for every word
which appears in a sentence read by the system, as
well as every collocation feature. Edges are added
only between nodes that happen to be active in the
same sentence. Given an example for the confusion
set {desert, dessert}, all the nodes that correspond to
active features in the example are activated. Then
an update stage occurs, in which each member of the
desert and dessert clouds updates its representation as
a function of the active nodes. For the sake of this up-
date, if the sentence consists of the word desert then
the example is viewed as a positive example for the
desert nodes and a negative example for the dessert
nodes. When testing, essentially the same process is
done, except that the prediction is done at the concept
(cloud) level. We predict desert if the total weighted
activation of the members of this cloud outweighs that
of dessert.

4.1 Using Winnow

At each node we use a version of Littlestone’s Win-
now?2 algorithm [Littlestone, 1988]. If the number of
features (variables) of the target function is n, the al-
gorithm keeps an n-dimensional weight vector of pos-
itive weights. The algorithm has three parameters: a
threshold #, and two update parameters, a promotion
parameter o > 1 and a demotion parameter 0 < § < 1.
For a given instance (z1,...,2,) the algorithm pre-
dicts 1 iff Z?:l w;x; > 0, where w; is the weight on
the edge connecting z; to the target node. Thus the
hypothesis of this algorithm is a linear threshold func-
tion over {0,1}”. The algorithm updates its hypoth-
esis only when a mistake is made. If the algorithm
predicts 0 and the received label is 1 (positive exam-
ple) then for all indices ¢ such that z; = 1, the weight
w; is replaced by a larger weight o - w;. If the algo-
rithm predicts 1 and the received label is 0 (negative
example) then for all indices ¢ such that #; = 1, the
weight w; is replaced by a smaller weight 8 - w;. In
both cases, if ; = 0, its weight remains unchanged.



Instead of representing each example as a bit vector,
we represent it simply as a list of its active attributes
(all the 1 bits), leaving unmentioned all the attributes
the example does not have (as in [Blum, 1992]).

Consider for example a confusion set {7, Wa}. Given
a sentence, it is first translated into a list of active fea-
tures, as in Section 3. Assume W is in this list. Then
the example is used as a positive example for each
W1 node and a negative example for the W5 nodes.
Let {w;}*_, be the set of weights on incoming edges
of a node in Wj. Given the list of active attributes,
the node predicts 1 iff Zle w;x; > 0, where z; = 1
when z; is present in the list of active attributes, and
z; = 0 otherwise. Then, the weights {w;}%_, are up-
dated based on the Winnow update rule and the corre-
sponding value of the attributes and the target node.

A further addition we make in the Winnow variant
used is that we drop poorly-performing attributes,
whose weight falls too low relative to the highest in-
coming weight of the target node. Intuitively, this
could result in an algorithm that actually speeds up as
it learns. Also, we try to identify cases where conjunc-
tions of the primitive features measured are actually
the relevant features. This is done by keeping track
of dynamically changing blocks of attributes that be-
have (almost) the same. Thus we keep track of fewer
features than we actually measure.

In the experiments presented here, we use § = 1 and
promotion parameter @ = 1.5. Cloud members use
different demotion parameters which vary between 0.5
and 0.9. The initial weights were 1/d, where d is a
typical number of active features in an example.

Properties

Winnow was shown to learn efficiently any linear
threshold function [Littlestone, 1988]. These are func-
tions f : {0,1}" — {0,1} for which there exist real
weights wy, ..., w, and a real threshold é such that
f(z1,...,2n) = 1iff 370 wja; > 0. In particular,
these functions include Boolean disjunctions and con-
junctions on k < n variables and r-of-k threshold func-
tions (1 < r < k < n). The key feature of Win-
now is that its mistake bound grows linearly with the
number of relevant attributes and only logarithmically
with the total number of attributes n. Using the ver-
sion mentioned above, in which we do not keep all the
variables from the beginning, but add variables when
necessary, the number of mistakes made on disjunc-
tions and conjunctions is linear with the size of the
largest example seen and with the number of relevant
attributes, and is independent of the total number of
attributes in the domain [Blum, 1992].

Winnow was analyzed in the presence of various
kinds of noise, and in cases where no linear-threshold

function can make perfect classifications [Littlestone,
1991]. It is proven, under some assumptions on the
type of noise, that Winnow still learns correctly, while
retaining its abovementioned dependence on the num-
ber of total and relevant attributes. (See [Kivinen
and Warmuth, 1995] for a thorough analysis of mul-
tiplicative update algorithms versus additive update
algorithms.) The algorithm makes no independence
or any other assumptions on the attributes, in con-
trast to Bayesian predictors which are commonly used
in statistical NLP. This condition was recently investi-
gated experimentally (but on simulated data) [Little-
stone, 1995]. It was shown that redundant attributes
dramatically affect a Bayesian predictor, while super-
fluous independent attributes are not as dramatic, and
have an effect only when the number of attributes is
very large (on the order of 10,000).

Winnow is a mistake-driven algorithm; that is, it up-
dates its hypothesis only when a mistake is made. In-
tuitively, this makes the algorithm more sensitive to
the relationships among the attributes — relationships
that may go unnoticed by an algorithm that is based
on counts accumulated separately for each attribute.
This is crucial in the analysis of the algorithm and has
been shown to be crucial empirically as well [Little-

stone, 1995].

4.2 Weighted Majority

Every concept (a member of a confusion set) is repre-
sented as a cloud of nodes in the network. While each
node in this cloud is running Winnow and learns its de-
pendence on other nodes in the network autonomously,
all the cloud’s members take part in any decision with
respect to the concept. In prediction, each member
of the cloud can be viewed as an ezpert. The global
algorithm uses the expert’s activation level to make a
prediction.

Different members of the cloud run the Winnow vari-
ant described above, each with a distinct demotion
parameter. The intuition is that the words in differ-
ent confusion sets may overlap to various degrees, and
should be penalized accordingly for a mistaken predic-
tion. For example, in the case of {among, between},
there is a considerable overlap in the usage of the
words, and therefore, a sentence in which the word
among appears is a negative example for between only
with some small probability. On the other hand,
{weather, whether} have disjoint usages, and every oc-
currence of weather is a negative example of whether
with certainty. Thus, following a mistake, in the for-
mer case we want to demote the weights by a smaller
ratio than in the latter. Running Winnow with various
demotion parameters in parallel allows the algorithm
to select by itself the best setting of parameters for
each target word.



The question of combining the predictions of experts in
a way that minimizes the total number of mistakes has
been studied extensively [Littlestone and Warmuth,
1994; Cesa-Bianchi et al., 1995; Cesa-Bianchi et al.,
1994]. The general approach is to assign to each ex-
pert a weight of the form 4™, where 0 < v < 1 is
a constant and m is the total number of mistakes in-
curred by the expert so far. The essential property
is that the weight of experts making many mistakes
rapidly disappears. In our case, after testing a vari-
ety of weighting and voting methods, we decided to
use a variant of the abovementioned weighted major-
ity scheme in which we start with 7 = 1 and decrease
its value with the number of examples seen, to avoid
weighing mistakes of the initial hypotheses too heavily.

In testing, given the list z of active attributes, each
node in a concept cloud evaluates Ele w;jx;, Where
{w;;}f_; is the set of incoming weights to the node.
We would then pick as our answer the concept with
the highest weighted sum of activation level, summed
over the concept’s nodes.

5 EXPERIMENTAL RESULTS

To understand the performance of WinnowS on the
task of context-sensitive spelling correction, we start
by comparing it with Bayes using the pruned set of fea-
tures that Bayes normally uses (see Section 3). This
evaluates WinnowS purely as a method of combin-
ing evidence from multiple features. An important
claimed strength of the Winnow-based approach, how-
ever, is the ability to handle large numbers of features.
We tested this by (essentially) disabling pruning, re-
sulting in tasks with over 10,000 features, and seeing
how WinnowS and Bayes scale up.

The preceding experiments drew the training and test
sets from the same population, following the tradi-
tional PAC-learning assumption. This assumption
may be unrealistic for the task at hand, however, where
a system may encounter a target document quite un-
like those seen during training. To check whether this
was in fact a problem, we tested the across-corpus per-
formance of the methods. We found it was indeed no-
ticeably worse than within-corpus performance.

To deal with this problem of unfamiliar test sets, we
tried a strategy of combining learning on the training
set with unsupervised learning on the (noisy) test set.
We tested how well WinnowS and Bayes were able to
perform on an unfamiliar test set using this strategy.

The sections below present these experiments, inter-
leaved with discussion.

5.1 Pruned versus Unpruned

The first step of the evaluation was to test WinnowS
under the same conditions that Bayes normally runs
under — i.e., using Bayes’ usual pruned set of features.
We used a random 80-20 split (by sentence) of the 1-
million-word Brown corpus [Kucera and Francis, 1967]
for the training and test sets. Bayes was trained first,
to learn its pruned set of features; each algorithm was
then tested, using this set of features, on 21 confusion
sets taken from the list of “Words Commonly Con-
fused” in the back of the Random House dictionary
[Flexner, 1983]. The results appear in the ‘Pruned’
columns of Table 1. Although for a few confusion sets,
one algorithm or the other does better, overall Win-
nowS performs comparably to Bayes.

The preceding comparison shows that WinnowS is a
credible method for this task; but it does not test the
claimed strength of Winnow — the ability to deal with
large numbers of features. To test this, we modified
Bayes to do only minimal pruning of features: features
were pruned only if they occurred exactly once in the
training set (such features are both extremely unlikely
to afford good generalizations, and extremely numer-
ous). The hope is that by considering the full set of
features, we will pick up many “minor cases” — what
Holte et al. [1989)] have called “small disjuncts” —
that are normally filtered out by the pruning process.
The results are shown in the ‘Unpruned’ columns of
Table 1. It can be seen that WinnowS almost always
improves, sometimes markedly, going from the pruned
to the unpruned condition; moreover, it outperforms
Bayes for every confusion set except one, where it ties.
The results below will all focus on the behavior of the
algorithms in the unpruned case.

5.2 Degradation for Unfamiliar Test Sets

The preceding experiment assumed that the training
set will be representative of the test set. For context-
sensitive spelling correction, however, this assumption
may be overly strong; this is because word usage pat-
terns vary widely from one author to another, or even
one document to another. For instance, an algorithm
may have been trained on one corpus to discriminate
between desert and dessert, but when tested on an ar-
ticle about the Persian Gulf War, will be unable to
detect the misspelling of desert in Operation Dessert
Storm. To check whether this is in fact a problem,
we tested the across-corpus performance of the algo-
rithms: we again trained on 80% of Brown, but tested
on a randomly-chosen 40% of the sentences of WSJ,
a 3/4-million-word corpus of articles from The Wall
Street Journal [Marcus et al., 1993]. The algorithms
were run in the unpruned condition. The results ap-
pear in Table 2. Tt can be seen that both algorithms
degraded on most confusion sets to varying degrees.



Confusion set Test Pruned Unpruned
cases | Features Bayes WinnowS | Features Bayes WinnowS

accept, except 50 78 88.0 87.8 849 92.0 92.0
affect, effect 49 36 98.0 100.0 842 98.0 100.0
among, between 186 145 75.3 75.8 2706 78.5 84.4
amount, number 123 68 74.8 73.2 1618 80.5 86.2
begin, being 146 84 95.2 89.7 2219 94.5 95.9
cite, sight, site 34 24 76.5 64.7 585 73.5 82.4
country, county 62 40 88.7 90.0 1213 91.9 96.8
its, it’s 366 180 94.5 96.4 4679 95.9 99.2
lead, led 49 33 89.8 87.5 833 85.7 93.9
fewer, less 75 6 96.0 94.4 1613 92.0 93.3
maybe, may be 96 86 90.6 84.4 1639 95.8 97.9
I, me 1225 1161 97.8 98.2 11625 98.3 99.5
passed, past 74 141 89.2 90.5 1279 90.5 95.9
peace, piece 50 67 74.0 72.0 992 92.0 94.0
principal, principle 34 38 85.3 84.8 669 85.3 94.1
quiet, quite 66 41 95.5 95.4 1200 89.4 90.9
raise, rise 39 24 79.5 74.3 621 84.6 89.7
than, then 514 857 93.6 96.9 6813 93.4 97.9
their, there, they’re 850 946 94.9 96.6 9449 94.6 98.4
weather, whether 61 61 93.4 98.4 1226 98.4 100.0
your, you're 187 103 90.4 93.6 2738 90.9 99.5

Table 1: Pruned versus unpruned performance of Bayes and WinnowS. In the pruned condition, the algorithms
use Bayes’ usual pruned set of features; in the unpruned condition, they use the full set. The algorithms were
trained on 80% of Brown and tested on the other 20%. The ‘Features’ columns give the number of features used.

Confusion set Test cases Test cases Bayes WinnowS
Within Across Within  Across | Within  Across
accept, except 50 30 92.0 80.0 92.0 86.7
affect, effect 49 66 98.0 84.8 100.0 93.9
among, between 186 256 78.5 78.5 84.4 78.1
amount, number 123 167 80.5 68.9 86.2 76.6
begin, being 146 174 94.5 89.1 95.9 90.8
cite, sight, site 34 18 73.5 50.0 82.4 33.3
country, county 62 71 91.9 94.4 96.8 100.0
its, it’s 366 1277 95.9 95.5 99.2 98.6
lead, led 49 69 85.7 79.7 93.9 92.8
fewer, less 75 148 92.0 94.6 93.3 93.9
maybe, may be 96 67 95.8 92.5 97.9 89.6
I, me 1225 328 98.3 97.9 99.5 98.5
passed, past 74 148 90.5 95.9 95.9 98.0
peace, piece 50 19 92.0 78.9 94.0 89.5
principal, principle 34 30 85.3 70.0 94.1 86.7
quiet, quite 66 20 89.4 60.0 90.9 75.0
raise, rise 39 118 84.6 71.2 89.7 79.7
than, then 514 637 93.4 96.5 97.9 98.1
their, there, they’re 850 748 94.6 91.6 98.4 98.5
weather, whether 61 95 98.4 94.7 100.0 96.8
your, you're 187 74 90.9 85.1 99.5 97.3

Table 2: Across-corpus versus within-corpus performance of Bayes and WinnowS. Training was on 80% of Brown
in both cases. Testing for the within-corpus case was on 20% of Brown; for the across-corpus case, it was on
40% of WSJ. The algorithms were run in the unpruned condition.



Confusion set Test Bayes WinnowS

cases | Sup only Sup/unsup | Sup only Sup/unsup Incr
accept, except 30 80.0 86.7 86.7 93.3 86.7
affect, effect 66 84.8 90.9 93.9 92.4 92.4
among, between 256 78.5 80.5 78.1 90.6 81.2
amount, number 167 68.9 77.8 76.6 88.0 79.6
begin, being 174 89.1 94.8 90.8 98.9 96.6
cite, sight, site 18 50.0 66.7 33.3 77.8 66.7
country, county 71 94.4 95.8 100.0 100.0 100.0
its, it’s 1277 95.5 95.7 98.6 98.8 97.8
lead, led 69 79.7 75.4 92.8 95.7 89.9
fewer, less 148 94.6 93.2 93.9 97.3 94.6
maybe, may be 67 92.5 91.0 89.6 94.0 94.0
I, me 328 97.9 98.5 98.5 98.8 98.5
passed, past 148 95.9 96.6 98.0 98.0 98.0
peace, piece 19 78.9 89.5 89.5 94.7 94.7
principal, principle 30 70.0 76.7 86.7 100.0 86.7
quiet, quite 20 60.0 70.0 75.0 80.0 80.0
raise, rise 118 71.2 87.3 79.7 90.7 84.7
than, then 637 96.5 96.2 98.1 97.6 98.3
their, there, they’re 748 91.6 90.8 98.5 98.8 98.4
weather, whether 95 94.7 95.8 96.8 95.8 95.8
your, you're 74 85.1 87.8 97.3 93.2 97.3

Table 3: Across-corpus performance of Bayes and WinnowS using the sup/unsup strategy, and of WinnowS using
incremental learning. Performance is compared with doing supervised learning only. Training in the sup/unsup
case is on 80% of Brown plus 60% of WSJ (5% corrupted); in the other cases, it is on 80% of Brown only. Testing
in all cases is on 40% of WSJ. The algorithms were run in the unpruned condition.

5.3 Dealing with Unfamiliar Test Sets

The preceding section demonstrated that the usual
PAC-learning assumption of similar training and test
sets may be overly strong for the task of context-
sensitive spelling correction. In this section, we present
a strategy for dealing with this problem, and evaluate
its effectiveness when used by WinnowS and Bayes.

The strategy is based on the observation that the test
document, though imperfect, still provides a valuable
source of information about its own word usages. Re-
turning to the Desert Storm example, suppose the al-
gorithm is asked to spell-correct an article containing
17 instances of the phrase Operation Desert Storm,
and 1 instance of the (erroneous) phrase Operation
Dessert Storm. In this case, the algorithm should be
able to learn from the test corpus the collocation:

(3) Operation __ Storm

which tends to imply desert. It can then use this fea-
ture to fix the one erroneous spelling of the phrase
in the test set. It is important to recognize that the
system is not “cheating” by looking at the test set; it
would be cheating if the system were given an answer
key along with the test set.

What the system is really doing is enforcing consis-
tency across the test set. It can detect sporadic errors,
but not systematic ones (such as writing Operation
Dessert Storm every time). However, it should be pos-
sible to pick up at least some systematic errors by also
doing regular supervised learning on a training set.

This leads to a strategy, which we call sup/unsup, of
combining supervised learning on the training set with
unsupervised learning on the (noisy) test set. We ran
both Winnow$S and Bayes with the sup/unsup strategy
to see the effect on their across-corpus performance.
We first needed a test corpus containing errors; we
generated one by corrupting a correct corpus. We var-
ied the amount of corruption from 0% to 20%, where a
corruption of p% means we altered a randomly-chosen
p% of the occurrences of the confusion set to be a dif-
ferent word in the confusion set.

The sup/unsup strategy calls for training on both a
training corpus and a corrupted test corpus, and test-
ing on the uncorrupted test corpus. For purposes of
this experiment, however, we split the test corpus into
two parts to avoid any confusion about training and
testing on the same data. We trained on 80% of Brown
plus a corrupted version of 60% of WSJ; and we tested
on the uncorrupted version of the other 40% of WSJ.



The results for the 5% level of corruption are shown
in Table 3; this level of corruption corresponds to typ-
ical typing error rates.* The table compares across-
corpus performance of each algorithm with and with-
out the additional boost of unsupervised learning on
part of the test corpus. While both Bayes and Win-
now$S benefit from the unsupervised learning, the effect
is particularly strong for WinnowS, which increases its
lead over Bayes, outscoring it in the sup/unsup condi-
tion (often by a wide margin) on all but one confusion
set. This provides impressive evidence of the ability of
WinnowS to adapt to the test set using this strategy.

The last column of Table 3 shows an alternative adap-
tation strategy for WinnowS using incremental learn-
ing. In this strategy, WinnowS is trained on 80% of
Brown, and tested on 40% of WSJ. After each test
instance, WinnowS is allowed to look at the answer
and use it as an additional training example. Thus by
the end of the test, WinnowS has effectively trained
on 80% of Brown plus 40% of WSJ. Not surprisingly,
this strategy outperforms training on 80% of Brown
only; it is not as good as sup/unsup, although it is not
directly comparable, as it trains on different data.

It should be borne in mind that the results in Ta-
ble 3 depend on two factors. The first is the size of
the test set; the larger the test set, the more informa-
tion it can provide during unsupervised learning. A
quantitative analysis of this effect is currently under
investigation. The second factor affecting the perfor-
mance of sup/unsup is the percentage corruption of
the test set. Figure 1 shows performance as a function
of percentage corruption for a representative confusion
set, {begin, being}. As one would expect, the improve-
ment from unsupervised learning decreases as the per-
centage corruption increases. For Bayes’ performance
on {begin, being}, 20% corruption is almost enough to
negate the improvement from unsupervised learning.

6 CONCLUSION

While theoretical analyses of the Winnow family of
algorithms have predicted an excellent ability to deal
with large numbers of features and to adapt to new
trends not seen during training, these properties have
remained largely undemonstrated. In the work re-
ported here, we have applied a Winnow-based algo-
rithm to context-sensitive spelling correction, a task
that addresses an important real-world problem, and
that has a potentially huge number of features (over
10,000 in some of our experiments). We compared
our Winnow-based algorithm, WinnowS, to a Bayesian
statistics-based algorithm representing the state of the
art for this task. WinnowS was found to exhibit two

“*Mays et al. [1991], for example, consider error rates
from 0.01% to 10% for the same task.
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Figure 1: Across-corpus performance of Bayes (dotted
lines) and WinnowS (solid lines) with the sup/unsup
strategy and with supervised learning only. The curves
show performance as a function of the percentage cor-
ruption of the test set. Training in the sup/unsup case
is on 80% of Brown, plus 60% of WSJ (corrupted); for
the supervised-only case, it is on 80% of Brown only.
Testing in both cases is on 40% of WSJ. The algo-
rithms were run for the confusion set {begin, being} in
the unpruned condition.

striking advantages: first, when the algorithms were
run with full feature sets (by doing only minimal prun-
ing of features), WinnowS achieved quite impressive
accuracies, outscoring Bayes on 20 out of 21 confusion
sets tried. Second, WinnowS was found to be consis-
tently better than Bayes at adapting to an unfamiliar
test corpus when using a strategy combining super-
vised learning on the training set with unsupervised
learning on the test set. We believe that these advan-
tages of WinnowS stem from the faster convergence it
achieves through its multiplicative weight-update al-
gorithm, and its consequent ability to deal with large
numbers of features, including so-called small disjuncts
that cover a very small number of instances each.

The Winnow-based approach presented in this paper is
being developed as part of a research program in which
we are trying to understand how networks of simple
and slow neuron-like elements can encode a large body
of knowledge and perform a wide range of interesting
inferences almost instantaneously. In particular, we
investigate this question in a system developed for the
purpose of learning knowledge representations for nat-
ural language understanding tasks. In light of the en-
couraging results presented here, we are now extending
the approach to other NLP-related tasks.
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