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Abstract
This paper describes a spell checking system that learns user behavior. Based on

that insight, the system with high likelihood suggests correct replacements for incorrect
words and declares unknown but correct words to be correct. The system relies on three
dictionaries, a so-called user history file, and two logic modules to carry out the learning
and spell checking.

Tests have proved that the system is very fast and highly reliable. Specifically, the
top ranked replacement word for an incorrect word was the correct word 96% of the time.
Words that were not in the large dictionary but that nevertheless were correct, for example,
persons’ names, compound words, and control commands, were declared to be correct 82%
of the time. It was never observed that an incorrect word was accepted as correct.

Keywords: Spell checking, learning, logic application.

1. Introduction
This paper describes a spell checking system for English texts. A key element that sets
the system apart from other systems, for example, Ispell (1993) or Microsoft Word (1994),
is learning of user behavior. Altogether, the system has the following features.

(1.1) Each word that the user considers to be incorrect is almost surely flagged as incorrect.
(1.2) For each word flagged as incorrect, a replacement word is suggested that very likely

is the one desired by the user.
(1.3) Each word that the system does not know but that the user considers to be correct,

is very likely declared to be unknown but correct.
(1.4) Each word that the user previously defined to be incorrect is always declared to be

incorrect.
(1.5) The spell checking is done rapidly and in a way that places no undue burden on the

user.

Features (1.2)–(1.4) are user and domain specific and cannot possibly be achieved
unless the system learns user behavior and preferences.

The paper proceeds as follows.
Section 2 reviews prior work on the detection and correction of spelling errors.
Section 3 summarizes the spell checking system of this paper. The system relies on

three dictionaries, a user history file, and two logic modules to make its decisions.
Sections 4–6 describe the three dictionaries, called general dictionary, user dictionary,

and excluded words dictionary. The general dictionary contains in excess of 200,000 words.
The user dictionary lists all words the user has employed so far. With each word, the user
dictionary contains, amongst other data, a word usage index that tells how often the word
has been encountered in recently processed files. The excluded words dictionary consists
of all words that the user considers to be incorrect regardless of circumstances.

Section 7 introduces the updating procedure for the word usage index.
Section 8 covers the user history file, which is a list of the spelling and typing errors

most recently made by the user.
Section 9 discusses the construction of words from root words. The main tool is a logic

formulation that defines frequently utilized construction rules. Reasoning based on that
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logic formulation establishes whether a given word is constructible and, in the affirmative
case, identifies the construction rule.

Section 10 concerns error detection and correction. Those tasks are carried out as
follows. Suppose a given word is not in the dictionaries and is not constructible from some
root word. We define such a word to be unknown. Similarly to the approach in Section 9 for
word construction, a logic formulation relates various characteristics of the given unknown
word and the user’s recent spelling and typing behavior, to spelling or typing errors at
certain likelihood levels. Reasoning based on that logic formulation identifies applicable
spelling and typing errors and associated likelihood values, and eventually produces up to
three replacement words.

If the systems finds replacement words, it ranks them according to weights that express
the likelihood of applicability. The user accepts one of the proposed replacement words,
or supplies another word, or declares the word in question to be actually correct.

If the system does not find any replacement words, it assumes that the unknown word
is actually correct. The user confirms that assumption or supplies another word.

Regardless of which case applies, the system analyzes the user response, correspond-
ingly updates the user dictionary and user history file, and thus learns user behavior and
preferences. Goal of that learning is an improvement of the accuracy with which the system
produces and ranks replacement words for incorrect words and declares unknown words to
be actually correct.

Section 11 covers a convenient way in which the system learns special vocabularies.
Section 12 describes test results. They show that the system is very fast and highly

reliable and that it computes correct replacements words and identifies unknown, correct
words as correct with impressive accuracy.

Further details may be found in Zhao (1996), which also describes a companion system
for syntax checking.

2. Prior Work
We review prior results on spell checking.

Error Detection
Efficient pattern matching and string comparison techniques have been explored for decid-
ing whether an input string appears in a predefined dictionary. Two widely used techniques
for error detection are n-gram analysis (Morris and Cherry (1975), Zamora, Pollock, and
Zamora (1981)) and dictionary lookup (Knuth (1973), Aho and Corasick (1975), Peterson
(1980)). We summarize the two approaches.

An n-gram is an n-letter subsequence of a string, where n usually is 1, 2, or 3. In
general, n-gram analysis techniques check each n-gram in an input string against a pre-
compiled table of n-gram statistics to determine whether the n-gram can occur in a word.
If it does, its frequency of occurrence in the words of the language is computed. Strings
containing n-grams that do not occur in words or occur very infrequently are considered
to be possible misspellings.

Dictionary lookup techniques check whether an input string appears in a dictionary.
Response time may become a problem as the size of the dictionary grows. The most
common technique for gaining fast access to a dictionary utilizes a hash table (Knuth
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(1973)), McIlroy (1982)). Other standard search techniques, such as tries (Knuth (1973)),
frequency ordered binary search trees (Knuth (1973)), and finite state automata (Aho and
Corasick (1975)), have been used to reduce dictionary search time. Dictionary partitioning
schemes were suggested by Peterson (1980) to store a small set of the most frequently used
words in cache or regular memory, and tens of thousands of less frequently used words in
secondary memory. Many spell checkers only contain root forms of words to avoid storage
of all possible morphological variants of individual words. However, simple affix stripping
methods may lead to false acceptances when affixes are stripped without regard to syntax.

Error Correction
Most prior error correction techniques focus on isolated words, without taking into ac-
count information that might be extracted from the linguistic or textual context in which
the string appears. Since about 80% of errors tend to be single error misspellings such
as insertion, deletion, substitution, or transposition of letters (Damerau (1964)), current
techniques concentrate on correcting single error misspellings. The main techniques for
error correction are as follows.

Minimum edit distance techniques that compute a minimum edit distance between a
misspelled string and a dictionary entry (Damerau (1964), Levenshtein (1966), Wagner
(1974)): These techniques are employed by most error correction algorithms.

Similarity key techniques that map every string into a key such that similarly spelled
strings have identical or similar keys (Pollock and Zamora (1984)): A key is computed for
a misspelled string and provides a pointer to all similarly spelled words in the dictionary.

Rule based techniques that attempt to represent knowledge of common spelling error
patterns in the form of rules: The rules provide a guideline for transforming misspellings
into valid words (Yannakoudakis and Fawthrop (1983a), (1983b)). Multiple candidates are
ranked by predefined estimates based on the applicability of the rules.

Other techniques, including n-gram based techniques, probabilistic techniques (Tous-
saint (1978), Hull and SriHari (1982)), and neural net techniques: The techniques are
derived from methods for optical character recognition (Riseman and Hanson (1974)),
command language interfaces (Durham, Lamb, and Saxe (1983), Hawley (1982)), database
retrieval (Parsaye, Chignell, Khoshafian, and Wong (1990)), name and address correction
(Cherkassky and Vassilas (1989), Gersho and Reiter (1990)), and text-to-speech synthesis
(Kukich (1992), Tsao (1990)).

The spell checking method described in this paper employs dictionary lookup tech-
niques and logic computations to detect and correct errors. A key difference to prior
methods is that our spell checking method learns individual user behavior and preferences.
The next section gives an overview of the method.

3. Spell Checking System
The spell checking system relies on the following approach.

When a user invokes the system in a given domain for the first time, the system
relies on a general dictionary to determine spelling errors and suggest corrections. The
dictionary has in excess of 200,000 entries and thus contains most common words of the
English language. The spell checking process creates and maintains a second dictionary
called user dictionary. There is a third, typically very small, excluded words dictionary
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that is defined and updated by the user. It contains words that the user will not accept
as correct regardless of circumstances. We present details about the three dictionaries in
Sections 4–6.

Suppose the system processes some text. For each word, it checks whether the word

(3.1) occurs in the excluded words dictionary, or
(3.2) occurs in the user dictionary, or
(3.3) occurs in the general dictionary, or
(3.4) can be constructed from a root word in the general dictionary, or
(3.5) likely is the result of a spelling or typing error, or
(3.6) likely is considered correct by the user.

The actions taken in the six cases are as follows.

Case (3.1): Word in Excluded Words Dictionary
If the word is found in the excluded words dictionary, it is known to be incorrect by
user definition. We indicate that fact to the user, ask for a replacement word, and check
(3.1)–(3.6) for the replacement word.

Case (3.2): Word in User Dictionary
If (3.1) does not apply and the word is in the user dictionary, it is considered to be
correct. That conclusion triggers updating of a word usage index, but does not involve any
interaction with the user. The updating formula for the index is given in Section 7.

Case (3.3): Word in General Dictionary
Suppose (3.1) and (3.2) do not apply. If the word is found in the general dictionary, we
store the word and the related syntactic classification such as adjective, noun, transitive
or intransitive verb, etc. in the user dictionary. We also check with the procedure for (3.4)
below whether the word can be constructed from some root word. If that is so, we amend
the user dictionary as described for (3.4).

Case (3.4): Construction of Word
Suppose (3.1)–(3.3) do not apply. We determine with the aid of a logic module whether
some construction rule can produce the given word from some root words of the general
dictionary. We only consider the most frequently used construction rules, for example, the
rules for adding the ending “er” or “ier” to express comparative form, or for adding “est”
or “iest” for superlative form. On the other hand, we do not consider the construction
that adds the ending “er” to convert a verb to a noun.

Once we have identified construction rules that derive the given word from some root
words, we store the given word, the root words, and the syntactic classification implied by
the constructions in the user dictionary.

The restricted use of construction rules has the positive effect that it is highly unlikely
that we derive words that actually are not part of the English language. Thus, it is equally
unlikely that we contaminate the user dictionary with incorrect words. On the negative
side, we may not recognize a valid construction. But that is a small problem, since the
general dictionary is large and since we may fail to recognize a valid construction at most
once, when the given word is encountered for the first time.
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Case (3.5): Spelling or Typing Error
Define a word to be unknown if it is not in any one of the dictionaries and cannot be
constructed from some root word. Thus, a word is unknown if (3.1)–(3.4) do not apply.
Suppose such a word is at hand.

We check whether the word likely is the result of a spelling or typing error. The
evaluation is carried out via a logic module that considers a number of possible errors and
the associated corrections. Assume that at least one such error is found. The correct words
corresponding to the errors are sorted according to weights that depend on the likelihood
that the user has made such errors and on the word usage index of the correct words. If
there are more than three correct words, all but the three most likely ones are discarded.
The remaining words are proposed to the user in the just determined order. The user
either accepts one of these words, or types in some other word, or declares that the word
supposedly in error is correct. The three subcases lead to the following system actions.

In the first subcase, the system records the error associated with the accepted word
in a user history file. We explain the role of that file in Section 8.

In the second subcase, we treat the word supplied by the user as another given word
and check (3.1)–(3.5). The resulting actions are as described above, with one exception.
If (3.1)–(3.4) do not apply, the system warns the user that the replacement word possibly
is incorrect, but otherwise does not carry out any error analysis. The user may choose to
ignore the warning, or may offer a different replacement word.

The third subcase does not trigger any error analysis.
Regardless of which subcase applies, an additional step is taken if the correct word,

that is, the word accepted or typed in by the user, is not in the user dictionary. In that
situation, we add the correct word to the user dictionary and check whether the correct
word can be created by one of the construction rules from some root words as described
in (3.4). If a construction rule applies, the applicable root words are stored together with
the given word in the user dictionary.

Choice (3.6): Word Unknown but Likely Correct
If none of the preceding cases applies, we guess that the user considers the given unknown
word to be correct and ask the user to confirm that conjecture. The user may agree or
type in another word. In the first subcase, we add the word to the user dictionary. In
the second subcase, we check (3.1)–(3.4) for the replacement word. If (3.1)–(3.4) do not
apply, the system warns the user that the replacement possibly is incorrect. The user may
choose to ignore the warning or may offer a different replacement word.

The above summary of the various system actions is not yet complete, since it does
not provide details about the three dictionaries, the word usage index, the user history
file, the word construction rules, and the error detection and correction process. We fill
that gap in the subsequent sections.

4. General Dictionary
At present, the general dictionary contains 215,707 words and their syntactic classification.
The dictionary originally was created using MobyWords (1991) and MobyParts-of-Speech
(1991). We have made changes by manual efforts and have also checked parts of the
dictionary against Webster’s Ninth New Collegiate Dictionary (1989).
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The classification of a word is encoded as a character string such that each character
represents one possible part of speech for the word. A total of 47 classification cases are
used.

A multi-hashing search algorithm is used to access the general dictionary. The gen-
eral dictionary is partitioned into buckets so that words beginning with the same three
characters are located in the same bucket. The first level hashing maps an input string
into its bucket. The second level hashing maps a string within a bucket into the possible
location in the general dictionary.

We allow different hash functions for the various buckets. To simplify the recreation of
the entire access process, we have designed software that automatically chooses the bucket
sizes and the hash functions so that worst-case access time is very low. This feature
has proved to be handy for other applications where we sometimes increased the general
dictionary by more than 50%.

Access time for a word is about 0.15 milliseconds on a computer with 42 mips. That
speed is ample for the spell checking application.

5. User Dictionary
The user dictionary contains each word that has been encountered so far and is correct
for one of the following two reasons: It is a word or a derivative of a word in the general
dictionary or has been declared to be correct by the user. Together with each word, the
user dictionary contains the following information.

(5.1) If applicable, a root word that via some construction rule can be converted to the
given word.

(5.2) A word usage index that measures the frequency with which the given word has
occurred in texts recently processed by the system. The computations producing the
index are explained in Section 7.

The data listed below are not used for spell checking, but are utilized and updated during
syntax checking and semantical checking. We will describe details in subsequent publica-
tions.

(5.3) The syntactic classification of the given word.
(5.4) The relative frequencies with which the given word previously has been classified as

adjective, noun, transitive or intransitive verb, etc.

We use a standard balanced tree structure to store, augment, and retrieve entries of
the user dictionary. Since that dictionary for a given domain rarely has more than 20,000
entries, storage and retrieval of entries is very fast.

6. Excluded Words Dictionary
The excluded words dictionary contains words that the user considers incorrect regardless
of circumstances. For example, if the user favors American English over British English,
the dictionary might contain “colour”.

During spell checking, the dictionary is stored and accessed like the user dictionary,
using a standard balanced tree structure.
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Updating of the excluded words dictionary is controlled by the user. In a typical
situation, the user discovers a word in a file that should not have been used but has been
accepted by the spell checking system. The user then adds that word to the excluded
words dictionary to prevent future acceptance of the word.

7. Word Usage Index
The word usage index, say q, of a word is utilized in case (3.5) when the weights of
replacement words for an incorrect word are computed. Details of the weight calculations
are included in Section 10. Here we describe how q is interpreted and updated. Generally,
the index lies between −1000 and 1000.

If the word is not in the user dictionary, the value of q is taken to be zero.
If the word is in the user dictionary and q is nonpositive, the word has not occurred

during the processing of the last |q|+ 1 files.
If the word is in the dictionary and q is positive, the word has occurred with a certain

frequency during the processing of recent files. Generally, the larger the value of q, the
higher the frequency.

The updating of q is as follows. Suppose a text is being processed. Each time a given
word is encountered, its index q is updated, say to q′, according to the formula

(7.1) q′ =

{ 2 if q ≤ 0
q + 1 if 0 < q < 1000
1000 if q = 1000

When processing of a text is completed, the current index q of each word is reduced
to another value, say q′′, according to an empirically determined formula that has worked
well for the weight calculations of Section 10. The formula is

(7.2) q′′ =


−1000 if q = −1000
q − 1 if −1000 < q < 100
bq − 0.0005q2c; if 100 ≤ q ≤ 1000

Evidently, for q = −1000, there is no reduction, and for −1000 < q < 100, the index
is reduced by 1. For 100 ≤ q ≤ 1000, the size of the reduction grows with q, and reaches
500 for q = 1000.

8. User History File
The user history file lists the types of spelling and typing errors made by the user. Since a
user may change spelling and typing behavior over time, the user history file is configured
as a sliding window that contains the most recently made errors. The file is utilized
to compute the likelihoods with which the user makes various types of errors. These
likelihoods enter the computations of the logic module for determining spelling and typing
errors; see Section 10.
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9. Construction of Words

In the English language, a number of construction rules can derive words from root words.
We have selected a certain subset so that we can derive most if not all words that are not
in the general dictionary but that can be derived from a root word in the dictionary.

Selected Construction Rules

The selected rules cover the addition of “ed” (for past tense of verbs), “er” (for comparative
form of adjectives and adverbs), “est” (for superlative form of adjectives and adverbs),
“ing” (for present participle of verbs), and “s” (for plural of nouns and third person
singular of verbs). Other rules—for example, for addition of “ly” to an adjective to derive
an adverb—are not needed since the general dictionary already contains all words that
may be derived by them. We have encoded the selected rules in a logic formulation that
has 255 propositional variables, 434 clauses in conjunctive normal form, and 1012 literals.
Besides the construction rules, the logic formulation also defines the related syntactic
classifications.

Space constraints prohibit a detailed discussion of the logic encoding of the selected
rules, so we just include three example rules and display the logic clauses that represent a
portion of one of the rules.

(9.1) A transitive verb suffixed with “d”, “ed”, or “ied” is a transitive verb past tense and
past participle tense.

(9.2) A root word ending with “s”, “sh”, “x”, or with “y” preceded by a consonant, should
not be directly suffixed with “s”.

(9.3) A root word ending with “e” and with a preceding consonant or “u”, or containing
only one vowel and ending with one consonant, should not be directly suffixed with
“ing”.

We discuss the logic clauses representing the following portion of the rule (9.2).

(9.4) A root word ending with “s”, “sh”, “x” should not be suffixed with “s”.

We define a predicate root(), which represents the classification of a given root word, on
the set root class = {noun, verb transitive, verb intransitive}. Since the set is finite, the
predicate root() effectively represents three propositional variables, which are root(noun),
root(verb transitive), and root(verb intransitive).

We need a second predicate, root end(), which represents the letter or string of letters
terminating the root word and which is defined on the set end string = {s, sh, x}. Ef-
fectively, the predicate defines the three propositional variables root end(s), root end(sh),
and root end(x).

In addition, we need three propositional variables: word end s, which tells whether
the given word ends in “s”; wrong end s, which specifies whether the word ends incorrectly
in “s”; and violate rule, which represents whether the word is incorrectly constructed.

With these predicates and propositional variables, (9.4) may be encoded as follows.
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FOR ALL c IN root class
FOR ALL e IN end string

IF root(c) AND
root end(e) AND

(9.5) word end s
THEN wrong end s.

IF wrong end s OR . . . (other variables connected by OR)
THEN violate rule.

Solution via Logic Minimization

Of the 255 variables of the logic formulation, 23 variables represent conclusions about
construction of the given word from some root word. For example, the variable violate rule
defined above is one of the conclusion variables. The other 232 variables represent the
input variables describing characteristics of the given word or are intermediate variables.
Examples of input variables are the variable word end s and the predicates root() and
root end(). An example of the intermediate variables is wrong end s.

One may decide whether a given word is improperly constructed as follows. First, the
input variables are assigned True/False values depending on the word. Second, each con-
clusion variable, among them violate rule, is processed in turn, by first assigning False to
the conclusion variable and then checking the resulting logic formulation for satisfiability.
For each conclusion variable so processed, the conclusion is valid if the logic formulation,
with True/False values assigned as just described, is unsatisfiable, and is not valid other-
wise.

We given an example. Suppose that the given word is “blesss” and that we partition
that word into the terminating letter “s” and the root “bless”. Note that “bless” is a transi-
tive verb and is not a noun or intransitive verb. Furthermore, both the given word “blesss”
and the root word “bless” end in “s”. Hence, the input variables root(verb transitive),
root end(s), and word end s receive the value True. All other input variables receive the
value False.

To settle whether the word “blesss” is improperly or properly constructed, we take
each conclusion variable in turn, set it to False, and decide satisfiability of the resulting
logic formulation. For the case of the conclusion variable violate rule, that process results
in unsatisfiability, as the reader may easily verify using the given True/False values in the
clauses of (9.5). Hence, the word “blesss” violates a construction rule.

Since there are 23 conclusion variables, in principle one would have to solve up to 23
satisfiability (SAT) instances to decide which ones of the conclusions do apply. It turns out
that we can obtain the same information much faster by solving a certain logic minimization
(MINSAT) instance, as described in Truemper (1998). We sketch the approach following
the definition of MINSAT.

A MINSAT instance is a SAT instance where two cost values have been assigned to
each variable. For a given variable, one of the two costs is incurred if the variable takes on
the value True, while the other cost is incurred if the value takes on the value False.

One solves a MINSAT instance as follows. One either produces a satisfying solution
that minimizes the total cost resulting from the True/False values of the satisfying solution,
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or concludes that the instance is unsatisfiable.
For the case at hand, we assign to each conclusion variable—for example, to the

variable violate rule—a cost of 1 if the variable takes on the value True, and a cost of 0
for taking on False. For each one of the remaining variables, we declare the cost values for
both True and False to be 0.

The selected cost values have the effect that any MINSAT solution assigns False
to the conclusion variables as much as possible. Furthermore, if in a MINSAT solution
a conclusion variable has the value False, then that variable cannot be proved to have
necessarily the value True. Thus, we can ignore all conclusion variables with value False,
and need to carry out the usual theorem proving procedure via SAT instances only for the
remaining conclusion variables, that is, for those with value True.

Implementation

We solve the above described logic problems as follows. The logic formulation is compiled
and evaluated by the Leibniz System (1997). That system contains a so-called program gen-
erator that derives from the logic formulation a solution algorithm. With that algorithm,
the Leibniz System supplies a worst-case bound on the solution time. For example, for
the logic formulation containing the construction rules, that bound is 0.02 sec, assuming
a machine speed of 42 mips. The solution algorithm is executed via the execution module
of the Leibniz System, which may be called from any C program.

10. Error Detection and Correction
Recall that a word is unknown if (3.1)–(3.4) do not apply. Deciding whether a given
unknown word is incorrect is a nontrivial matter. We answer that question approximately
by determining whether the word can be explained as a misspelled or mistyped word. That
is, if we find such an explanation, we declare the word to be in error. Otherwise, we deem
the word to be correct.

The typical spelling and typing errors are well known, see for example Berry (1961),
Shaw (1962), and Blumenthal (1981).

The most frequently occurring spelling errors consist of violations of general rules for
adding a suffix (rules for doubling final consonant, dropping silent “e”, retaining silent “e”,
replacing “y” by “i”) and particular spelling mistakes (“ei”↔ “ie”, “de”↔ “di”, omitting
double consonant, doubling single consonant).

We consider the following typing errors, where neighbor letter refers to any letter that
on the keyboard is close to a given letter: Transposing two letters, transposing a blank
space with a letter, repeating a letter, omitting a letter, inserting a letter that is a neighbor
of a given letter, typing an incorrect letter that is a neighbor of the required letter.

The user history file contains the types of spelling and typing errors most recently
made by the user. We rely on that information to decide which type of error, if any, has
been made when a given unknown word is suspected to be in error.

Define a candidate word to be any word the user may have intended to type. We
determine and rank candidate words as follows. First, we identify errors that most likely
produced the incorrect word and search for candidate words in light of those errors. Second,
we rank candidate words according to certain weights. Details are as follows.
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Finding Likely Errors and Candidate Words

We use an empirically derived logic formulation to determine for a given incorrect word
the possible spelling and typing errors and their likelihoods of occurrence. The logic
formulation relates the recent error history of the user to the possible spelling and typing
errors. Space constraints prevent a complete description of the formulation, so we just
summarize three facts represented by some of the logic clauses.

(10.1) Suppose that the incorrect word does not contain repeated letters, or consecutive
letters that are neighbors, or “de”, or “di”, or “ie”, or “ei”. Further, suppose that
the word does not end in a silent “e”, that the text does not have two consecutive
unknown words including the one being investigated, and that the word does not
occur elsewhere in the text. Then the error almost surely is a transposition of two
letters.

(10.2) Suppose that the word contains “de”, or “di”, or “ie”, or “ei”, or ends in a silent “e”,
or that the text contains two consecutive unknown words including the given one.
Further, suppose that the word contains two consecutive letters that are neighbors.
Then the error sometimes is an insertion of an additional letter.

(10.3) If the incorrect word contains repeated letters and if the user history file contains
several cases where the user erroneously typed repeated letters, then the word fre-
quently contains an erroneous repetition of letters.

Similarly to the logic formulation of the word construction rules, we use logic min-
imization and algorithms compiled by the Leibniz System (1997) to deduce a list of the
errors that may have produced the given word, and the likelihoods with which these errors
apply. The logic formulation has 116 propositional variables, 328 clauses in conjunctive
normal form, and 982 literals. The Leibniz System produces for that logic minimization
problem a solution algorithm with worst-case time bound of 0.01 sec, assuming a machine
speed of 42 mips.

The conclusions derived via the logic formulation define the desired list of errors. We
sketch how those conclusions and the associated likelihoods are computed.

First, terms of the logic facts expressing the degree of certainty such as “almost surely”,
“frequently”, and “sometimes” are converted to numerical likelihood values; for example,
the cited example terms result in 100%, 75%, and 25%, respectively. These numerical
values are associated with the logic clauses representing the logic facts.

Second, the likelihood with which a conclusion holds is determined by the following
reasonable rule adapted from Fuzzy Logic: It is the largest number l such that the clauses
with likelihood value greater than or equal to l prove the conclusion. Then the conclusion
is declared to hold with likelihood l.

Third, the Leibniz System relies on the just cited rule to determine conclusions and
the associated likelihood values by the following iterative process, where initially l = 100%.

Delete all clauses with likelihood less than l. Solve the resulting MINSAT instance.
Declare each conclusion that is proved by the solution of that instance and has not
been proved for a higher likelihood value, to hold at level l. If l is at the lowest level,
stop; otherwise, reduce l to the next lower value and begin the next iteration.
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Using the list of errors and the associated likelihoods so computed, we derive from
the given word candidate words. That is, we postulate each error of the list in turn and,
with the aid of the user dictionary and the general dictionary, establish candidate words.
To assure a speedy derivation of the candidate words, we do not construct candidate
words from root words of the general dictionary. As a result, we may not obtain a needed
candidate word. We claim that, over time, occurrences of that event become less frequent
and asymptotically cease entirely. Indeed, the user dictionary contains all words ever
employed by the user and asymptotically contains the entire vocabulary of the user. Thus,
all needed candidate words eventually will be found in the user dictionary.

Ranking Candidate Words

We assign to each candidate word a weight w that is computed from the word usage index
q, the likelihood l with which the user made the error that converts the candidate word to
the given word, and a certain scaling factor α. The formula for w is

(10.4) w = (1 + α)q + 100l

The value of α is dynamically adjusted so that, according to past experience, the candidate
word with the highest weight most likely is the correct replacement word.

If more than three candidate words are found, all but the three with largest weights
are discarded. The remaining words are suggested to the user, in the order given by the
weights. The user may accept one of the candidate words, type in some other word, or
may declare the given word to be correct. In our implementation of the spell checking
process, acceptance of the candidate word with highest weight is particularly convenient;
it just requires pressing of the “Return” key.

11. Learning Special Vocabularies
Some text files, for example TEX files, contain special control words that the system might
diagnose as incorrect. To speed up learning of such special vocabularies, one may declare
a given text to be entirely correct. The system processes such a text without any user
interaction, by assuming that any word not falling into one of the cases (3.1)–(3.4) is
correct.

12. System Implementation and Test Results
The spell checking system has been implemented and used for several years at a number
of universities and research institutes. It is called the Laempel System. We have carried
out extensive testing of the system using various files. In this section, we summarize the
conclusions.

Execution Times

The system has extraordinary speed. For example, spell checking a TEX file with 24,541
words for the first time, with no initial user dictionary available, required about 20 sec on
a 42 mips computer. Afterward, each spell checking run of that file required about 2 sec.
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Error Detection

We have compared the Laempel System with the program Ispell (1993). The conclusions
are as follows.

In a number of test runs, the Laempel System found about 4% more spelling and
typing errors than Ispell. This conclusion is confirmed qualitatively by R. Borndörfer
of the Konrad-Zuse-Institut for Information Technology, Berlin, Germany, who performed
extensive tests comparing the Laempel System with Ispell. He applied the Laempel System
to a number of files that had been declared correct by Ispell, and found several mistakes
in virtually everyone of these files.

On the other hand, we have yet to encounter the situation where the Laempel System
accepted an erroneous word. This is not surprising, since the system has a highly reliable
general dictionary and utilizes word construction rules very conservatively.

A good spell checker not only identifies all erroneous words, but also guesses most
words that it does not know but that are correct, to be correct. In tests using persons’
names, compound words, and control commands that are not in the general dictionary or
the user dictionary, the Laempel System regarded such words as correct 82% of the time,
while Ispell did so 19% of the time.

Error Correction

We evaluated the ability of the two systems for suggesting correct replacement words with
test files typed by two users. The files contained a total of about 15,500 words, of which
53 were wrongly spelled everyday words. We purposely ignored special words such as
names, compound names, and control commands of the files since we knew already that
the Laempel System is more adept at handling such unknown but correct words than
Ispell.

To make the comparison as fair as possible, we started the Laempel System on the
files of each user with a vacuous user dictionary and error history file. Hence, all learning
had to take place during the processing of the files of each user.

The Laempel System suggested correct replacement words for 51 of the 54 erroneous
words. It could not find a replacement word for 3 of the 54 words.

Ispell suggested correct replacement words for 52 of the errors. It could not find a
replacement word for 2 of the 54 words. This is better than the Laempel System by one
word.

The Laempel System proposed on average 1.2 replacement words for each one of the 51
erroneous words, and, by design, never more than 3 words. The suggested first replacement
choice was correct in 96% of the cases.

In contrast, Ispell suggested on average 3.0 words for each one of the 52 erroneous
words, and in one case as many as 31 words. In fact, in 16% of the cases, Ispell proposed
at least 4 words. The suggested first replacement choice was correct in 79% of the cases.

Given these results, we are justified in claiming that the Laempel System is fast and
that, based on learning of user behavior and preferences, the system reliably identifies in-
correct words, very frequently proposes correct replacements, and very frequently identifies
unknown correct words as correct.
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