
Best-Case Lower Bounds in a Group

Sequence for the Job Shop Problem

Guillaume Pinot
∗
Nasser Mebarki

∗

∗ IRCCyN, 1 rue de la Noé, BP 92101, 44321 Nantes Cedex 3, France
(e-mail: surname.name@irccyn.ec-nantes.fr)

Abstract:

Group sequencing is a well-studied scheduling method for the job shop problem. The goal of
this method is to have a sequential �exibility during the execution of the schedule and to
guarantee a minimal quality corresponding to the worst case. But the best case quality of a
group sequence should also be interesting. This article presents new methods to evaluate the
best case quality for any regular objective function. More particularly, three new makespan
lower bounds are presented. The experiments performed with these lower bounds exhibit very
good performances.

Keywords: Job and activity scheduling; Discrete event systems in manufacturing.

1. INTRODUCTION

The job shop problem with multiple precedence con-
straints (J |ri, prec|f from the classi�cation described in
Graham et al. [1979]) is an optimization problem com-
posed of resources, operations, and constraints. Opera-
tions (Oi) are executed on resources (M`, also named as
machines) during a processing time pi with precedence
constraints (predecessors (resp. successors) of Oi are given
by Γ−(i) (resp. Γ+(i))). A resource can execute only one
operation at a time. An operation Oi has a release date ri,
its starting time is denoted by ti and its completion time
is denoted by Ci.

Generally, the job shop problem uses a regular objective
function f that is a monotonous function of the Ci. The
goal is to minimize this objective function.

The makespan, denoted by Cmax, calculated maxCi, that
corresponds to the total time of execution of the schedule,
is a classical regular objective.

But, in reality, manufacturing problems are not so deter-
ministic. This is why group sequencing was created by
Erschler and Roubellat [1989]. This method describes a
set of feasible schedules in order to delay decisions to take
into account uncertainties. Group sequencing evaluates a
group sequence according to the worst case quality in the
set of feasible schedules.

But the best case quality of a group sequence can also be
interesting for di�erent reasons. It gives information on the
schedule before the execution: for a given group sequence,
with an evaluation of the best case quality and the worst
case quality, it would be possible to know the range of
all possible qualities of the �nal schedule. It could also be
helpful to evaluate a decision during the execution of the

? This paper was published in the Proceedings of the 17th World

Congress, The International Federation of Automatic Control,
Seoul, Korea, July 6-11, 2008.
doi://10.3182/20080706-5-KR-1001.1295

schedule: it would allow to know, during the execution of
the schedule, if there is at least one schedule in the group
sequence that has no delay.

In this article, we present new methods to evaluate the
best case quality of a group sequence.

2. GROUPS OF PERMUTABLE OPERATIONS

Group of permutable operations was �rst introduced in
Erschler and Roubellat [1989]. The goal of this method is
to have a sequential �exibility during the execution of the
schedule and to guarantee a minimal quality corresponding
to the worst case. This method has been widely studied
in the last twenty years, in particular in Erschler and
Roubellat [1989], Billaut and Roubellat [1996], Wu et al.
[1999], Artigues et al. [2005]. For a theoretical description
of the method, see Artigues et al. [2005].

A group of permutable operations is a set of operations to
be performed on a given resourceM` in an arbitrary order.
It is named g`,k. The group containing the operation Oi is
denoted by g(i).

A group sequence is de�ned as a sequence of groups (of per-
mutable operations) on each machine M`: g`,1, . . . , g`,v`

,
performed in this particular order. On a given machine, the
group after (resp. before) g(i) is denoted by g+(i) (resp.
g−(i)).

A group sequence is feasible if for each group, all the
permutation among all the operations of the same group
gives a feasible schedule (i.e. a schedule which satis�es all
the constraints of the problem). As a matter of fact, a
group sequence describes a set of valid schedules, without
enumerating them.

The quality of a group sequence is expressed in the same
way as of a classical schedule. However, it is measured as

14876

i j Mi,j pi,j

1 1 1 3
1 2 2 3
1 3 3 3
2 1 2 4
2 2 3 3
2 3 1 1
3 1 3 2
3 2 1 2
3 3 2 2

(a) A job shop problem

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M1

M2

M3

1, 3

1

1, 2

2

2

3

3

(b) A group sequence solving the problem described in Fig. 1a

Fig. 1. A Job Shop Problem Solved by a Group Sequence

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M1

M2

M3

1

1

1

2

2

2

3

3

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M1

M2

M3

1

1

1

2

2

2

3

3

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M1

M2

M3

1

1

1

2

2

2

3

3

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M1

M2

M3

1

1

1

2

2

2

3

3

3

Fig. 2. Semi-active Schedules Described by Fig. 1b

the quality of the worst semi-active schedule 1 found in
the group sequence, as de�ned in Artigues et al. [2005].

To illustrate these de�nitions, let us study an example.
To simplify, the job-shop problem without multiple prece-
dence constraints is used (J ||f from the classi�cation de-
scribed in Graham et al. [1979]). Operations are indexed
by a couple (Oi,j) and the operations need to be executed
in second index order (Ci,j ≤ ti,j+1). In the �gures, only
the �rst index is written in order to have more readable
graphics. Fig. 1a presents a job shop problem with three
machines and three jobs, while Fig. 1b presents a feasible
group sequence solving this problem. This group sequence
is made of seven groups: two groups of two operations
and �ve groups of one operation. This group sequence
describes four di�erent semi-active schedules shown in
Fig. 2. Note that these schedules do not always have the
same makespan: the best case quality is with Cmax = 10
and the worst case quality is with Cmax = 17.

Group sequencing has an interesting property: the quality
of a group sequence in the worst case can be computed in
polynomial time for minmax regular objective functions
like makespan and maximum lateness (see Artigues et al.
[2005] for the description of the algorithm). Thus, it
is possible to compute the worst case quality for large
scheduling problems. Consequently, this method may be
used to compute the worst case quality in real time during
the execution of the schedule. This real-time property
makes it possible to dynamically use it in a decision
support system.

1 A semi-active schedule is a feasible schedule in which no local left-
shift of an operation leads to another feasible schedule.

This method enables to describe a set of schedules in an
implicit manner (i.e. without enumerating the schedules)
which guarantees a minimal performance. Indeed, as it
proposes a group of permutable operations, one can choose
inside a group the operation that best �ts the real state of
the system.

Furthermore, the �exibility added to the schedule should
be able to absorb uncertainties. Only three studies have
tried to verify this property. Wu et al. [1999] studies the
impact of disturbed processing times on the objective of
weighted sum of tardiness in comparison with static and
dynamic heuristics. When processing times are not greatly
disturbed, they observe that group sequencing obtain
better performances. Esswein [2003] studies the impact of
disturbed processing times, due dates and release dates
on a one machine problem and compares its results with
a static heuristic method. On average, performances are
better with group sequencing than with the static method.
Pinot et al. [2007] studies the impact of non-modeled
transportation time between two operations. The method
exhibits good performances, even when transportation
times and processing times are comparable.

3. FINDING THE BEST CASE COMPLETION TIME
OF AN OPERATION

3.1 The algorithm

In Artigues et al. [2005], the worst case completion time
of each operation is computed in polynomial time using
dynamic programming. Our main goal in this section is to
compute the best case completion time, that corresponds

14877

to the smallest value of Ci in every semi-active schedule
described by a group sequence. As this problem is NP-
hard, 2 it would be very useful to compute a lower bound
in polynomial time for the best case completion times.

We can easily compute such a lower bound for our prob-
lem using a relaxation on the resources by making the
assumption that each resource has an in�nite capacity.
In this case, the best case lower bound for starting time
of an operation (θi) is computed as the maximum of the
best case (lower bound for) completion time (χj) of all
of its predecessors: for an operation Oi, they include the
predecessors given by the problem (Γ−(i)) as well as the
operations on the predecessor group (each operations in
g−(i)). For example, in the example described in Fig. 1,
the predecessors of operation O2,3 (executed on M1) are
operation O2,2 (executed onM3) because of the precedence
constraint, and the operations O1,1 and O3,2 (executed on
the same machineM1) because they are on the predecessor
group (g−(2, 3)). So, we have: θi = max

(
ri, max

j∈g−(i)
χj , max

j∈Γ−(i)
χj

)
χi = θi + pi

(1)

Calculating θi using (1) is equivalent of the head compu-
tation of operation Oi as explained in Carlier and Pinson
[1989].

However this bound can be improved using the property of
group-sequencing: an operation in a given group cannot be
executed before all the operations of its predecessor group
have been executed. As a consequence, an operation can
only begin after the optimal makespan of the predecessor
group.

Thus, it necessitates the computation of the optimal
makespan of a group. We have previously computed θi

as release date, so we can generate a 1|ri|Cmax problem
instance that corresponds to our problem, with ri = θi.
This problem is polynomially solvable by ordering the
operations in ascending release date (Brucker and Knust
[2007], Lawler [1973]).

Thus, we compute a lower bound of the best case starting
time of an operation (θi), the best case completion time of
an operation (χi), and the best case completion time of a
group (γg`,k

):
θi = max

(
ri, γg−(i), max

j∈Γ−(i)
χj

)
χi = θi + pi

γg`,k
= Cmax of 1|ri|Cmax,∀Oi ∈ g`,k, ri = θi

(2)

3.2 Complexity

The complexity of (2) corresponds to the complexity of the
longest path in a directed acyclic graph, which is O(M),
M being the number of arcs, using Bellman's algorithm.

For each node χi, there is one arc that comes from the
node θi, so there are n such arcs, n being the number of
operations.

2 Because the reduction between F ||Cmax and the best Cmax in a
group sequence is trivial, and that F ||Cmax is NP-hard, then the
best case in a group sequence is NP-hard.

For each node θi, considering k as the maximum number of
predecessors of an operation, then there are k+1 arcs, i.e.
k that come from the predecessors, and one that come from
the predecessor group. So, we have O((k + 1)n) arcs that
come to every θi node, n being the number of operations.

Because a group sequence is a partition of the set of
operations, the number of arcs incident to a group node
correspond to the number of operations n.

So, the number of arcs in the graph is

O(n) +O((k + 1)n) +O(n) = O(kn)

On the group's nodes, we use an algorithm with the
complexity O(h log h), h being the number of operations
on the group, so the complexity of all the computation on
group's nodes is:

O(h1 log h1 × · · · × hn log hn) = O(n log(maxhi))
= O(n log n)

Thus, the global complexity of the algorithm is:

O = O(kn) +O(n log n) = O(kn+ n log n).

In most cases, k = 1 for classical job shop, and the
complexity is O(n log n). On the worst case, k = n, and
the complexity is O(n2).

3.3 Example of the algorithm's execution

0 1 2 3 4 5 6 7 8 9

M1

M2

1, 2

1, 2

3

3

Fig. 3. The group sequence described in Tab. 1

0 1 2 3 4 5 6 7 8 9

M1

M2

1 2 3

1 2 3

0 1 2 3 4 5 6 7 8 9

M1

M2

1 2 3

2 1 3

0 1 2 3 4 5 6 7 8 9

M1

M2

2 1 3

1 2 3

0 1 2 3 4 5 6 7 8 9

M1

M2

2 1 3

2 1 3

Fig. 4. Semi-active Schedules Described by Fig. 3

Let us illustrate these algorithms with a small example. To
keep this example easily understandable, a small �ow shop
problem is considered. The problem, the group sequence
and the di�erent values computed by the algorithms are
presented in Tab. 1. A worst-case representation of the

14878

Problem description Using (1) Using (2) Optimal val.

i j Mi,j pi,j g`,k θi,j χi,j θi,j χi,j γg(i,j) θi,j χi,j

1 1 1 1 g1,1 0 1 0 1 4 0 1
1 2 2 2 g2,1 1 3 1 3 5 1 3

2 1 1 3 g1,1 0 3 0 3 4 0 3
2 2 2 2 g2,1 3 5 3 5 5 3 5

3 1 1 1 g1,2 3 4 4 5 5 4 5
3 2 2 1 g2,2 5 6 5 6 6 6 7

Table 1. Example of a �ow shop

group sequence can be viewed in Fig. 3. The four semi-
active schedules described by the group sequence are
represented in Fig. 4. These are used to compute the
optimal value presented in Tab. 1.

We can see the improvement between (1) and (2) for the
operation O3,1. The computation of the makespan of the
group g1,1 improves the lower bound of χ3,1 up to its
optimal value.

Eq. (2) does not give the optimal value of χ3,2: the optimal
value is 7, but (2) �nds 6. This is due to the fact that
any two best case starting times for any two operations
may not appear in the same semi-active schedule. In
the example, there is no semi-active schedule for which
t1,2 = θ1,2 = 1 (�rst schedule on Fig. 4) and t2,2 = θ2,2 = 3
(fourth schedule on Fig. 4): if t1,2 = 1, then t2,2 cannot be
3 but only 4 because of the precedence constraints. So,
γg2,1 is not equal to the best case completion time of the
group gg2,1 (6, as on the �rst schedule on Fig. 4), but only
a lower bound (5), and then the error is propagated to the
successor groups.

4. LOWER BOUNDS FOR REGULAR OBJECTIVES

Because regular functions increase monotonously with
increasing Ci, a lower bound of Ci enable to compute a
lower bound for any regular objective function. For this,
we can use χi as a lower bound of Ci.

Let us study minsum regular objective functions, denoted
by f̄ . Minsum regular objective functions are the functions
that can be modeled as a sum of functions on the comple-
tion times Ci that need to be minimized. If we call fi the
function for the operation Oi, the objective function can
be computed as:

f̄ =
∑
∀Oi

fi(Ci)

For example, a well known minsum objective is the mean
tardiness denoted by T̄ with fi(Ci) = max(0, Ci − di).

We can directly use the fact that χi is a lower bound of
Ci to create a generic minsum lower bound as:

LB(f̄) =
∑
∀Oi

fi(χi)

But, due to the fact that our schedule are made of group
sequences, this formulation can easily be improved: there
is at least one operation Oi per group which has γg(i) as
a lower bound. The idea is to use the minimal fi(γg(i)) on
each group as the lower bound of fi(Ci):

LB(f̄) =
∑
∀g`,k

(
fj(γg`,k

) +
∑

Oi∈g`,k,i6=j

fi(χi),

j such as fj(γg`,k
) = min

Oi∈g`,k

fi(γg`,k
)

)
There is yet another kind of generic regular objective that
is often used: minmax regular objectives, denoted by fmax.
These are functions that can be modeled as the maximum
of functions on the completion times Ci that need to be
minimized. If we call fi the function for a given operation
Oi, the objective function can be computed as:

fmax = max
∀Oi

fi(Ci)

Using the same technique as for minsum objectives, we
can calculate a lower bound as:

LB(fmax) = max
∀g`,k

(
max

(
fj(γg`,k

), max
Oi∈g`,k

fi(χi)
)
,

j such as fj(γg`,k
) = min

Oi∈g`,k

fi(γg`,k
)

)

5. MAKESPAN LOWER BOUND

5.1 Using regular objective formulation

The makespan, denoted by Cmax, is a regular minmax
objective. It represents the total time span of the schedule.

A lower bound can be computed using the formula for
regular minmax objective:

LB(Cmax) = max
∀g`,k

(
max

(
γg`,k

, max
Oi∈g`,k

χi

))
= max
∀g`,k

γg`,k

This lower bound is referred as the �natural lower bound,�
denoted by �Natural LB.�

To improve this lower bound, let us study the classical
lower bound for the job shop problem.

5.2 The classical lower bound for the job shop problem

The classical lower bound for the job shop problem, de-
scribed in Carlier and Pinson [1989], consists of the relax-
ation of the problem in di�erent one machine problems: for
each machine, we take the operations that are executed by
this machine. For each operation, we have three values:

• The head ri, that is a lower bound of the earliest
starting time of the operation in the job shop problem
(with possible partial schedule).

14879

• The tail qi, that is a lower bound of the time between
the end of the operation and the end of the schedule
(with possible partial schedule).
• The processing time pi, the same as the processing
time of the operation in the job shop problem.

Thus, we have a one machine problem as de�ned by Carlier
[1982] for each machine: each operation Oi cannot begin
before ri, executes for a duration pi on the machine, and
the operation will end qi after the end of its execution.
The objective is to minimize the makespan of the schedule.
This problem is equivalent to 1|ri|Lmax with di = −qi. It is
NP-hard (Brucker and Knust [2007], Lenstra et al. [1977]).
Carlier [1982] provides a good optimal algorithm to solve
this problem. The classical lower bound of this problem is
called Jackson's preemptive schedule and its complexity is
O(n log n), n being the number of operations.

The optimal value of such a one machine problem, is a
lower bound of the job shop problem. So, in practice, we
take the maximal optimal makespan (resp. a lower bound)
of the generated one machine problem as a lower bound
of the job shop problem. The e�ciency of this technique
relies on the quality of the heads and tails as shown by
Carlier and Pinson [1990, 1994].

5.3 An improved makespan lower bound

The �rst step of the classical lower bound for the job shop
problem is a one-machine-problem relaxation. For group
sequencing, a group relaxation is adapted: each group is
converted into a one machine problem.

Then, e�cient heads and tails have to be found for these
one machine problems. θi using (2) is a valid head and
must be quite e�ective. Because of the symmetry of heads
and tails, tails can be computed as θi using a reversed
(2): rather than starting the computation at the beginning
of the scheduling problem, the computation begins at
the end. So, replacing predecessor by successor, the new
formulation is

θ′i = max
(
γ′g+(i), max

j∈Γ+(i)
χ′j

)
χ′i = θ′i + pi

γ′g`,k
= Cmax of 1|ri|Cmax,∀Oi ∈ g`,k, ri = θ′i

(3)

with θ′i being a valid tail for the group relaxation. The one
machine problems are then generated.

Now, as for the classical lower bound for the job shop prob-
lem, the one machine problems have to be evaluated using
Jackson's preemptive schedule or Carlier's algorithm. The
maximal evaluation will be the lower bound of the group
sequence.

The lower bound based on the optimal resolution of the
one-machine-problem relaxation is denoted by �Optimal
OMP LB� and the lower bound based on the Jackson pre-
emptive schedule of the one-machine-problem relaxation is
denoted by �JPS OMP LB.�

Next section will present an evaluation of the makespan
lower bounds described above.

6. EXPERIMENTS

6.1 Protocol

The goal of these experiments is to compare three
makespan lower bounds: Natural LB presented in sec-
tion 5.1, Optimal OMP LB and JPS OMP LB presented
in section 5.3.

We took a well known set of benchmark instance called
la01 to la40 from Lawrence [1984]. These instances are
widely used in the job shop literature. These are classical
job shop instances, with m operations on each job (m as
the number of machine), each operation of a job is executed
on a di�erent machine. It is composed of 40 instances of
di�erent sizes (5 instances for each size).

For each instance, we generated group sequences with
known optimal value and very high �exibility. To generate
these group sequences, we used a greedy algorithm that
merges two successive groups according to di�erent criteria
until no group merging is possible. This algorithm begins
with a one-operation-per-group sequence computed by the
optimal algorithm described in Brucker et al. [1994] (so,
by construction, the optimal makespan of these group
schedules is the makespan of the one-operation-per-group
sequence). The greedy algorithm is described in Esswein
[2003]. The source code of the program used to makes these
experiments can be downloaded at http://www.irccyn.
ec-nantes.fr/~pinot/.

Then, for each generated group sequences, we compute the
gap between each lower bound and the optimal makespan
of the group sequence. The results are represented on a
boxplot in Fig. 5 and the results corresponding to the
instance sizes are presented in Tab. 2.

Fig. 5. Gap of the di�erent lower bound

Optimal OMP LB and JPS OMP LB have similar execu-
tion times. Execution times of Natural LB is about two
times shorter than JPS OMP LB.

6.2 Discussion

Execution times give important information on the critical
part of the lower bounds. Di�erence between Natural LB
and JPS OMP LB can be explained by the fact that
Natural LB uses only head computation whereas JPS
OMP uses head and tail computation. The fact that
Optimal OMP LB and JPS OMP LB have almost the
same execution time reveals that the optimal one-machine-
problem resolution is not signi�cant relative to head and
tail computation.

14880

Size Natural LB JPS OMP LB Optimal OMP LB
Gap Time (ms) Gap Time (ms) Gap Time (ms)

10× 5 0.00369 0.1840 0.00369 0.3712 0.00369 0.3840
15× 5 0.00472 0.3120 0.00000 0.6128 0.00000 0.6400
20× 5 0.00000 0.4640 0.00000 0.8648 0.00000 0.9040
10× 10 0.05535 0.5280 0.03652 0.9440 0.03270 0.9920
15× 10 0.01208 0.8480 0.00324 1.5416 0.00305 1.6401
20× 10 0.01132 1.2000 0.00708 2.1857 0.00708 2.3281
30× 10 0.00000 1.9241 0.00000 3.5450 0.00000 3.7682
15× 15 0.02877 1.4480 0.01864 2.6225 0.01713 2.8401

Mean 0.01477 0.8635 0.00865 1.5859 0.00796 1.6871

The size is noted as n×m with n the number of jobs and m the number of machines.

Table 2. Mean gap of the di�erent lower bounds according to the size of the instance

In Fig. 5, we can see that the median is 0 for each lower
bound. Thus, for more than half of our instances, the lower
bound is optimal (21/40 for Natural LB, 23/40 for the
others). This is a very encouraging result, which means
that the computation of χi is quite e�ective on these
instances.

Natural LB is the weakest lower bound, but is quite
e�ective with a mean gap of 1.5% (Tab. 2) and the worst
gap at 8.6% (Fig. 5).

JPS OMP LB and Optimal OMP LB have performances
of the same scale, with a little advantage for Optimal
OMP LB. Because Optimal OMP LB have greater or equal
performance than JPS OMP LB (by construction) and
that the execution times are quite the same, Optimal OMP
LB seems to be the best lower bound.

In these experiments, the di�erence of performances be-
tween these two lower bounds does not seem to be so high,
but, used in an exact branch and bound method, small im-
provement can have big repercutions. In an exact method
using these lower bounds, the method using Optimal OMP
LB is about 10 times faster than using JPS OMP LB.

It seems that wider instances exhibit small gaps. It is
consistent with the fact that wide job shop instances seem
simpler instances in Brucker et al. [1994].

7. CONCLUSION

In this article, a �rst step on best case evaluation of group
sequencing is done. Eq. (2) seems to be a good method
to generate di�erent lower bounds. For the makespan,
Optimal OMP LB gives very good results.

Other tools can also be helpful for best case evaluation of
group sequencing. Heuristics and exact methods would be
very useful to complete the resolution of this problem.

REFERENCES

Christian Artigues, Jean-Charles Billaut, and Carl Ess-
wein. Maximization of solution �exibility for robust shop
scheduling. European Journal of Operational Research,
165(2):314�328, September 2005.

Jean-Charles Billaut and François Roubellat. A new
method for workshop real-time scheduling. Interna-
tional Journal of Production Research, 34(6):1555�1579,
1996.

Peter Brucker and Sigrid Knust. Complexity results
for scheduling problems. http://www.mathematik.

uni-osnabrueck.de/research/OR/class/, 2007. [on-
line; retrieved on 2008-06-18].

Peter Brucker, Bernd Jurisch, and Bernd Sievers. A
branch and bound algorithm for the job-shop scheduling
problem. Discrete Applied Mathematics, 49(1-3):107�
127, 1994.

Jacques Carlier. The one-machine sequencing problem.
European Journal of Operational Research, 11(1):42�47,
September 1982.

Jacques Carlier and E. Pinson. An algorithm for solving
the job-shop problem. Management Science, 35(2):164�
176, 1989.

Jacques Carlier and E. Pinson. A practical use of jackson's
preemptive schedule for solving the job shop problem.
Annals of Operations Research, 26(1-4):269�287, 1990.

Jacques Carlier and E. Pinson. Adjustment of heads and
tails for the job-shop problem. European Journal of
Operational Research, 78(2):142�147, October 1994.

Jacques Erschler and François Roubellat. An approach for
real time scheduling for activities with time and resource
constraints. In R. Slowinski and J. Weglarz, editors,
Advances in project scheduling. Elsevier, 1989.

Carl Esswein. Un apport de �exibilité séquentielle pour
l'ordonnancement robuste. Thèse de doctorat, Univer-
sité François Rabelais Tours, 2003.

Ronald L. Graham, Eugene L. Lawler, Jan Karel Lenstra,
and A. G. H. Rinnooy Kan. Optimization and ap-
proximation in deterministic sequencing and scheduling:
a survey. Annals of Discrete Mathematics, 5:287�326,
1979.

Eugene L. Lawler. Optimal sequencing of a single machine
subject to precedence constraints. Management Science,
19(5):544�546, January 1973.

S. Lawrence. Resource constrained project scheduling:
an experimental investigation of heuristic scheduling
techniques (supplement). Technical report, Graduate
School of Industrial Administration, Carnegie-Mellon
University, Pittsburgh, Pennsylvania, 1984.

Jan Karel Lenstra, A. H. G. Rinnooy Kan, and Peter
Brucker. Complexity of machine scheduling problems.
Annals of Discrete Mathematics, 1:343�362, 1977.

Guillaume Pinot, Olivier Cardin, and Nasser Mebarki. A
study on the group sequencing method in regards with
transportation in an industrial FMS. In Proceedings of
the IEEE SMC 2007 International Conference, 2007.

S. David Wu, Eui-Seok Byeon, and Robert H. Storer. A
graph-theoretic decomposition of the job shop schedul-
ing problem to achieve scheduling robustness. Opera-
tions Research, 47(1):113�124, 1999.

14881

