
An Exact Method for the Best Case in a
Group Sequence: Application to a General

Shop Problem

Guillaume Pinot Nasser Mebarki

IRCCyN — UMR CNRS 6597, 1 rue de la Noé
BP 92101, 44321 Nantes Cedex 3, France

(e-mail: firstname.lastname@irccyn.ec-nantes.fr)

Abstract: Group sequencing is a well-studied scheduling method for the job shop problem. The
goal of this method is to have a sequential flexibility during the execution of the schedule and
to guarantee a minimal quality corresponding to the worst case. But the best case quality of a
group sequence should also be interesting. This article presents a new method to evaluate the
best-case quality. This method is a branch and bound algorithm to find the optimal solution for
any regular objective. Experiments show the efficiency and the limits of the exact method.

Keywords: Scheduling, Flexibility, Branch and bound, Combinatorial optimization, Flexible
manufacturing systems.

1. INTRODUCTION

The job shop problem with multiple precedence con-
straints (J |ri,prec|f from the classification described in
Graham et al. (1979)) is an optimization problem com-
posed of resources, operations, and constraints. Operations
(Oi) are executed on resources (mi denotes the resource
M` used for operation Oi) during a processing time pi with
precedence constraints (predecessors (resp. successors) of
Oi are given by Γ−(i) (resp. Γ+(i))). A resource, also
named machine, can execute only one operation at a time.
An operation Oi has a release date ri, its starting time is
denoted by ti and its completion time is denoted by Ci.
Generally, the job shop problem uses a regular objective
function f that is an increasing function of the Ci. The
goal is to minimize this objective function. The makespan,
denoted by Cmax, calculated maxi Ci, that corresponds to
the total time of execution of the schedule, is a classical
regular objective.
Actually, manufacturing problems are not deterministic.
This is why group sequencing was created by Erschler and
Roubellat (1989). This method aims at solving the job-
shop problem by proposing not only one schedule but a
set of different schedules in order to delay decisions to
take into account uncertainties. This set of schedules is
presented through groups of permutable operations. Group
sequencing evaluates a group sequence according to the
worst case quality in the set of feasible schedules.
The best case quality of a group sequence can also be
interesting for different reasons. It gives information on the
schedule before the execution: for a given group sequence,
with an evaluation of the best case quality and the worst
case quality, it will give us the minimal and the maximal
quality of the final schedule. It could also be helpful to
evaluate a decision during the execution of the schedule: it
will allow to know, during the execution of the schedule,

if there is at least one schedule in the group sequence that
has no late jobs.
In this article, we present a new exact method to evaluate
the best case quality of a group sequence. First, we will
present group sequencing. Second, we will present lower
bounds for the best-case of a group sequence. Third, we
will present a branch and bound method to find the
optimal solution according to a regular objective function
in a group sequence. This exact method uses the lower
bounds previously introduced. Finally, we will present
experiments of this method on well-known instances of the
job shop problem.

2. GROUPS OF PERMUTABLE OPERATIONS

Group of permutable operations was first introduced in Er-
schler and Roubellat (1989). The goal of this method is to
provide a sequential flexibility during the execution of the
schedule and to guarantee a minimal quality corresponding
to the worst case. This method has been developed in the
last twenty years, in particular in Erschler and Roubellat
(1989); Billaut and Roubellat (1996); Wu et al. (1999);
Artigues et al. (2005). For a theoretical description of the
method, see Artigues et al. (2005).
In the rest of this article, the index i will be used for the
operations and the index ` will be used for the resources.
A group of permutable operations is a set of operations to
be performed on a given resourceM` in an arbitrary order.
It is named g`,k. The group containing the operation Oi is
denoted by g(i). The index k will be used for the sequence
number of a group.
A group sequence is defined as a sequence of v` groups (of
permutable operations) on each machineM`: g`,1, . . . , g`,v` ,
performed in this particular order. On a given machine, the
group after (resp. before) g(i) is denoted by g+(i) (resp.
g−(i)).

Preprints of the 13th IFAC Symposium on
Information Control Problems in
Manufacturing, Moscow, Russia, June 3 - 5,
2009

Th-C2.5

1269

Table 1. A job shop problem

i 1 2 3 4 5 6 7 8 9
Γ−(i) ∅ {1} {2} ∅ {4} {5} ∅ {7} {8}
mi M1 M2 M3 M2 M3 M1 M3 M1 M2
pi 3 3 3 4 3 1 2 2 2

Fig. 1. A group sequence solving the problem describe in
Tab. 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M1

M2

M3

1, 8

3, 5

24

6

7

9

Fig. 2. Semi-active Schedules Described by Fig. 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M1

M2

M3

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M1

M2

M3

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M1

M2

M3

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M1

M2

M3

1

2

3

4

5

6

7

8

9

A group sequence is feasible if for each group, all the
permutations among all the operations of the same group
gives a feasible schedule (i.e. a schedule which satisfies all
the constraints of the problem). As a matter of fact, a
group sequence describes a set of valid schedules, without
enumerating them.
The quality of a group sequence is expressed in the same
way as that a classical schedule. It is measured as the
quality of the worst semi-active schedule 1 found in the
group sequence, as defined in Artigues et al. (2005).
To illustrate these definitions, let us study an example.
Tab. 1 presents a job shop problem with three machines
and three jobs, while Fig. 1 presents a feasible group
sequence solving this problem. This group sequence is
1 A semi-active schedule is a feasible schedule in which no local left-
shift of an operation leads to another feasible schedule.

made of seven groups: two groups of two operations
and five groups of one operation. This group sequence
describes four different semi-active schedules shown in
Fig. 2. Note that these schedules do not always have the
same makespan: the best case quality is with Cmax = 10
and the worst case quality is with Cmax = 17.
The execution of a group sequence consists in choosing
a particular schedule among the different possibilities
described by the group sequence. It can be viewed as a
sequence of decisions: each decision consists in choosing
an operation to execute in a group when this group is
composed of two or more operations. For instance, for the
group sequence described on Fig. 1, two decisions have to
be done: on M1, at the beginning of the scheduling, either
operation O1 or O8 has to be executed. Let us suppose
the decision taken is to schedule O1 first. On M3, after
the execution of O7, there is another decision: scheduling
operation O3 or O5 first. If the decision is to execute O5
first, the first schedule of Fig. 2 is realized.
Group sequencing has an interesting property: the quality
of a group sequence in the worst case can be computed
in polynomial time for minmax regular objective func-
tions like makespan (see Artigues et al. (2005) for the
description of the algorithm). Thus, it is possible to com-
pute the worst case quality for large scheduling problems.
Consequently, this method can be used to compute the
worst case quality in real time during the execution of the
schedule. Due to this property, it is possible to use group
sequencing in a decision support system in real time during
the execution of the scheduling process.
This method enables the description of a set of schedules
in an implicit manner (i.e. without enumerating the sched-
ules) and guarantees a minimal performance. Actually, as
it proposes a group of permutable operations, one can
choose inside a group the operation that best fits the real
state of the system.
Furthermore, the flexibility added to the schedule should
permit to handle uncertainties. Three studies have tried to
evaluate this property. Wu et al. (1999) study the impact of
disturbed processing times on the weighted total tardiness
in comparison with static and dynamic heuristics. When
processing times are not greatly disturbed, they observe
that group sequencing obtain better performances. Ess-
wein (2003) studies the impact of disturbed processing
times, due dates and release dates on a one machine
problem and compares its results with a static heuristic
method. Average performances are better with group se-
quencing than with the static method. Pinot et al. (2007)
studies the impact of non-modeled transportation time
between two operations. The group sequencing method is
always better than a static scheduling method and better
than a reactive scheduling method as long as transporta-
tion times are less or equal to processing times.

3. LOWER BOUNDS

In this section, we present an algorithm for finding a lower
bound of the best case completion time of an operation.
This algorithm will be the core of different lower bounds
described later in the section. A more complete description
of these bounds can be found in Pinot and Mebarki (2008).

1270

3.1 Finding the best case completion time of an operation

In Artigues et al. (2005), the worst case completion time
of each operation is computed in polynomial time using
dynamic programming. Our main goal in this section is to
compute the best case completion time, that corresponds
to the smallest value of Ci in every semi-active schedule
described by a group sequence. As this problem is NP-
hard, 2 it would be very useful to compute a lower bound
in polynomial time on these best case completion times.
We can easily compute such a lower bound of our prob-
lem using a relaxation on the resources by making the
assumption that each resource has an infinite capacity.
However this bound can be improved using the property
of group-sequencing: an operation in a given group cannot
be executed before all the operations of its previous group
have been executed. As a consequence, an operation can
only begin after the optimal makespan of the previous
group.
In this case, the best case lower bound for starting time
of an operation (θi) is computed as the maximum of
the best case (lower bound for) completion time (χj) of
its predecessors (Γ−(i)) and the (lower bound for the)
completion time of the previous group (γg−(i)).
Thus, it needs the computation of the optimal makespan
of a group (γg`,k). The best case lower bound for starting
time of an operation (θi) can be viewed as a release date,
so we can generate a 1|ri|Cmax problem instance that
corresponds to our problem, with ri = θi. This problem
is polynomially solvable by ordering the operations in
ascending release date (Brucker and Knust, 2007; Lawler,
1973).
Thus, the lower bounds are computed as follows:

θi = max
(
ri, γg−(i), max

j∈Γ−(i)
χj

)
χi = θi + pi

γg`,k = Cmax of 1|ri|Cmax,∀Oi ∈ g`,k, ri = θi

(1)

3.2 Lower bounds for regular objectives

Because regular objective functions are increasing func-
tions of Ci by definition, a lower bound of Ci enables to
compute a lower bound for any regular objective function.
For this, we can use χi as a lower bound of Ci.
For example, we can compute a lower bound of the total
tardiness (ΣTi):

LB(ΣTi) =
∑
i

Ti(χi) =
∑
i

(max(χi − di, 0))

The makespan, denoted by Cmax, is the most studied
regular objective. It represents the total time span of the
schedule.
A lower bound can be computed as:

LB(Cmax) = max
`,k

γg`,k

2 Because the reduction between F ||Cmax and the best Cmax in a
group sequence is trivial, and that F ||Cmax is NP-hard, then the
best case in a group sequence is NP-hard.

This makespan lower bound is improved by Pinot and
Mebarki (2008) adapting the classical job-shop lower
bound (Carlier and Pinson, 1989) to group sequencing
using (1).
The lower bounds presented in this section can be used in
an exact method. Next section describes such a method.

4. EXACT METHOD

In this section, we will describe an exact method to find
the best schedule in a group sequence. This algorithm is
a branch and bound algorithm that can be used for any
regular objective function: only the lower bound needs to
be adapted to the objective function.
A branch and bound algorithm is made of two procedures:
a branching procedure and a bounding procedure. The
branching procedure takes a (partially resolved) problem
(called a node) and generates several subproblems (also
called nodes) with the union of these problems covering the
original problem. Solving all the nodes solves the global
problem. The bounding procedure uses two bounds: the
upper bound, that is the quality of the best solution found
so far, and the lower bound, that gives a lower bound of
the best quality possible to find at a given node. If the
lower bound of a given node is greater or equal than the
upper bound, all the solutions of the subproblem of this
node will be equal or worst than the better solution found.
So, this node can be discarded.

4.1 Branching

The branching procedure is based on active schedules. In
an active schedule, it is impossible to schedule an operation
earlier without delaying another operation. In the set of
active schedules, it exists an optimal schedule for any
regular objective, so we can use this branching procedure
to find the optimal value for any regular objective.
We do not use a classical method to enumerate all active
schedules, but we use the properties of group sequenc-
ing to simplify this enumeration. For a feasible group
sequence, the groups are partially ordered according to
the operation’s precedence constraints and the group order
constraint (i.e., on a given machine, a group cannot begin
before the preceding group on the same machine is not
completed). So, sequencing the groups according to this
partial order guarantees that all the predecessor operations
(according to precedence constraints and group ordering)
of the operations in the group are scheduled. It is possible
to enumerate every active schedule by scheduling entirely
each group according to the partial order of the groups.
A node on the search space will be represented as a group
sequence, and an ordered list of groups to be sequenced.
A solution is a group schedule with only one operation per
group (and an empty list of groups).
In practice, at the beginning of the algorithm, the groups
are ordered according to their partial order. Then, the
groups with one operation are removed, because they are
already sequenced. This ordered list of groups represent
the groups to be sequenced in this particular order.
The node generation will be as follows:

1271

• The earliest starting times (ri) of each operation in
the first group of the list are calculated.
• The smallest completion time is calculated : Cmin =

mini|Oi∈gk,` ri + pi.
• All operations with a starting time smaller than the
smallest completion time (ti < Cmin) are selected.
• For each of these operations, a new node is gener-
ated: the operation is sequenced (a group with the
operation is created before the current group and the
operation is removed from the current group) and
then, if the current group has only one operation
remaining, the group is removed from the list.

As an illustration of the method, let us enumerate all the
nodes of the group sequence described on Fig. 1. First, we
order all the groups. A solution is

[{O4}, {O7}, {O1, O8}, {O2}, {O9}, {O3, O5}, {O6}],
We can see that this order is not unique: for example, the
two first groups (i.e., {O4} and {O7}) can be permuted,
but {O7}must precede {O1, O8} because of the precedence
constraint between O7 and O8. Then, we remove all the
groups with only one operation per group. So, we have
[{O1, O8}, {O3, O5}] remaining in the list.
Fig 3 shows the different nodes generated. The global node
that describes the problem is composed of the original
group sequence and the group list found previously. The
branching procedure is executed on this node, with the
current group {O1, O8}:
• r1 = 0, r8 = 2 because of the precedence constraint
between O7 and O8.
• Cmin = min(C1, C8) = min(3, 4) = 3.
• Because r1 < r8 < Cmin, the two operation of this
group are selected.
• Two nodes are generated: node 1 with O1 sequenced
first and node 2 with O8 sequenced first. Because the
current group has now only one operation for node 1
and 2, the current group is removed.

Then, the branching procedure is executed on node 1, with
a new current group {O3, O5}:
• r3 = 7, r5 = 4.
• Cmin = min(C3, C5) = min(10, 7) = 7.
• Because r5 < Cmin ≤ r3, only O5 is selected.
• Only node 1,1 is generated with O5 sequenced before.
Each group of this node has only one operation per
group, so this node is a solution.

Then, the branching procedure is executed on node 2. As
for node 1,1, only node 2,1 is generated. This node is
a solution of the problem. The optimal solution of any
regular objective is the schedule in node 1,1 or in node
2,1.

4.2 Reducing the search space

To reduce the search space, we propose a sufficient condi-
tion for the complete sequencing of the first group in the
group list without losing the optimal solution.
The completion time of an operation interfere with the
objective function in two ways:
• the completion time itself, because the objective func-
tion is a function of the completion times;

Fig. 3. Search space

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Global node: [{O1, O8}, {O3, O5}]

M1

M2

M3

1, 8

3, 5

24

6

7

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Node 1: [{O3, O5}]

M1

M2

M3 3, 5

1

24

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Node 1,1: []

M1

M2

M3

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Node 2: [{O3, O5}]

M1

M2

M3 3, 5

1

24

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Node 2,1: []

M1

M2

M3

1

2

3

4

5

6

7

8

9

• by interfering with the completion time of the other
operations, because of precedence constraints or re-
source constraints.

So, a sufficient condition for the sequencing of an entire
group (according that the group is the current group in
the node structure) without losing the optimal solution is:
• the sequencing does not degrade the objective func-
tion;
• the sequencing does not interfere on the earliest start-
ing time of the operations with successor constraints
and resource constraints.

The last condition can be translated to a one machine
problem using θi computed with (1): the operations need
to be completed before the earliest starting time of the
successor operations and before the smallest earliest start-
ing time of the operation in the successor group. So, we

1272

have a one machine problem with release dates and strict
due dates, the due date of an operation as the minimum
between the earliest starting time of the successors of the
operation and the earliest starting time of the operation
in the successor group:

1|ri, d̃i|−,∀Oi ∈ g`,k, d̃i = min
j|Oj∈Γ+(Oi)∪g`,k+1

θj

with ri the earliest starting time of the operation Oi in the
group sequence.
If a sequence of the current group is a solution of this prob-
lem and the completion times of the operations sequenced
do not degrade the objective function, then this group can
be sequenced without losing the optimal solution.
Before processing a node, a sequence that satisfies the
sufficient condition is searched for the first group of the
list. If it is found, then the group is sequenced, the group
is removed from the list, and this new node is added to
the list of nodes.
Due to this sufficient condition, we can avoid the genera-
tion of some nodes, and so, reduce the size of the search
space.
Let us illustrate this improvement on the global node
of Fig. 3. First, we generate the one machine problem
corresponding to the group {O1, O8} using (1):

r1 = 0, d̃1 = min(θ2, θ6) = min(4, 7) = 4
r8 = 2, d̃8 = min(θ9, θ6) = min(7, 7) = 7

The sequence O1, O8 solves this problem. If C1 and C8 are
not involved in the computation of the objective function,
then, this group can be sequenced, corresponding to node
1. For example, for the makespan, C1 and C8 are not
involved because C6 will always be greater than C1 and
C8. Due to the sufficient condition, it is possible to discard
Node 2 (and Node 2,1 because it is generated from Node
2) and, thus, reducing the search space.

4.3 Searching strategies

The branching procedure generates nodes, but the order
of exploring the nodes affect the performances of the algo-
rithm: if the best solution is found sooner, the upper bound
will be better, and then more nodes will be discarded.
There are two main techniques to search in a branch and
bound method: deep search and best-bound search.
Deep search goes directly to a solution: the nodes are
processed in a last-in-first-out order. In this mode, it is
very important to order the nodes correctly when a list
of nodes is added. It would allow to find good solutions
earlier. In this mode, we order the generated nodes as
follow: the generated nodes are ordered in increasing order
of the lower bound.
Another technique to search the tree is to process first
the nodes with the best bound: best-bound first. In this
mode, only the needed node will be processed, except a few
nodes that have a lower bound equal to the optimal quality
but which are not solutions The drawback of this mode is
that the stored nodes can take a lot of memory. That is
why this mode is generally used with branching procedure
that generates only two nodes. Our branching procedure

generates more than two nodes, so we need to limit the
number of nodes stored to control the memory used. First,
we use a best-bounded first search, i.e. we process first the
nodes with the lowest lower bound, and then, the ties are
broken according to the number of operations sequenced
(the nodes close to a solution are favored). If the number
of stored nodes is greater than a given number, the best-
bound node is processed entirely using the deep search.

5. EXPERIMENTS

This section presents some experiments of the exact
method for the makespan objective function. Different
variants will be tested in order to analyze the impact of
each component of the exact method.

5.1 Protocol

We took a well known set of benchmark instances called
la01 to la40 from Lawrence (1984). These instances are
widely used in the job shop literature. These are classical
job shop instances, with m operations on each job (m as
the number of machine), each operation of a job executed
on a different machine. It is composed of 40 instances of
different sizes (5 instances for each size). The objective is
to minimize the makespan.
For each instance, we generated group sequences with
known optimal value and very high flexibility. To gener-
ate these group sequences, we used a greedy algorithm
that merged two successive groups according to different
criteria until no group merging is possible. This algorithm
begins with a one-operation-per-group sequence computed
by the optimal algorithm described in Brucker et al. (1994)
(so, by construction, the optimal makespan of these group
schedules is the makespan of the one-operation-per-group
sequence). The greedy algorithm is described in Esswein
(2003). The experiments are executed on an Intel Pentium
Xeon 2.60GHz.
We try to solve these problems with three different variants
of our exact method:
• Default: the makespan lower bound presented in

section 3.2. is used, the sufficient condition is used,
and best-bound search is used until 1000 nodes are
stored (the program always uses less than 100MB of
memory with these settings);

• Deep search: same as Default with deep search;
• No sufficient condition: same as Default without using

the sufficient condition of section 4.2.

5.2 Results

The results of these experiments are exposed on Tab. 2.
For each instance set of the same size and each variant of
the exact method, we give the execution time. The last
line of the table gives the average gap.
Results for instances not resolved by Default after 24
hours are shown on Tab. 3. The variant used is Default,
except 10000 nodes can be stored before using deep search.
For each instance, the optimal value is shown (except for
instance la27, the exact algorithm for the job shop problem

1273

Table 2. Exact Method Results

The size is noted as n × m with n the number of jobs and m the
number of machines.

Average time (s)
Size Nb. inst. Default Deep search No suff. cond.

10× 5 5 0.057 0.127 0.063
15× 5 5 0.112 0.285 0.148
20× 5 5 0.028 0.028 0.028
10× 10 5 18.382 8.902 116.610
15× 10 5 165.416 1044.473 827.296
20× 10 2 31.722 1946.364 343.394
30× 10 5 3.380 8.816 4.215
15× 15 3 4429.970 95597.361 8206.857

Average Gap – 18.936 1.716

Table 3. Results for hard instances after 24h

LB: lower bound, UB: upper bound
Size Inst. Opt. LB UB

20× 10 la27 1252* 1235 1279
20× 10 la29 1202 1202 1221
20× 10 la30 1355 1355 1359
15× 15 la37 1397 1397 1412

has only proposed an upper bound of the optimum). Then,
the lower bound and upper bound after 24 hours is shown.
The exact method finds the optimal solution for most
of the instances in less than a day of computation. The
Default variant is the most effective variant on these
experiments: it outperforms the other variants on almost
every instances.
First, we can see that instances with 5 machines are
resolved very fast: less than one second. Our algorithm
is very effective for small size problems. For small manu-
facturing systems, it could be used in real time during the
execution of the schedule. The results for the instances of
size 30× 10 are also very good. This can be explained by
the fact that there are lots of optimal schedules in these
problems (finding an optimal solution is easier), and that
the lower bound is very accurate on long instances (there
are less nodes to explore in order to prove the optimality).
Let us study the impact of the searching strategy. The
average time gap is about 19, i.e. using deep search
is 20 times longer than using best-bound search. Best-
bound search minimizes the number of unnecessary nodes
explored. Deep search outperforms best-bound search only
for la16 and la18. In these cases, the optimal solution is
found very early, and then, only necessary nodes need to
be explored.
The sufficient condition reduces the search space by def-
inition. The overhead is profitable: the average gap time
is about 1.7. In some cases, the gap can be very high: for
la17, it is more than 27.
Now let us study the results on Tab. 3. This table gives
results for the instances that cannot be solved within a day.
Instances la30 and la37 have an optimal lower bound. The
difficulty for these instances is to find the optimal solution.
Instance la27 is different. The lower bound and the upper
bound are disposed around the best upper bound found.

6. CONCLUSION

In this article, we study the best-case in a group sequence.
An exact method solving this problem is proposed. This
method is a branch and bound algorithm that can solve
the problem for any regular objective. The enumeration is
based on the enumeration of the active schedules, with a
dedicated method to reduce the search space.
The experiments show that our exact method is really fast
for small instances, but some instances with 200 operations
could not be solved within a day.

REFERENCES
Artigues, C., Billaut, J.C., and Esswein, C. (2005). Max-

imization of solution flexibility for robust shop schedul-
ing. European Journal of Operational Research, 165(2),
314–328.

Billaut, J.C. and Roubellat, F. (1996). A new method for
workshop real-time scheduling. International Journal of
Production Research, 34(6), 1555–1579.

Brucker, P., Jurisch, B., and Sievers, B. (1994). A branch
and bound algorithm for the job-shop scheduling prob-
lem. Discrete Applied Mathematics, 49(1-3), 107–127.

Brucker, P. and Knust, S. (2007). Complexity results
for scheduling problems. http://www.mathematik.
uni-osnabrueck.de/research/OR/class/. [online; re-
trieved on 2008-06-18].

Carlier, J. and Pinson, E. (1989). An algorithm for solving
the job-shop problem. Management Science, 35(2), 164–
176.

Erschler, J. and Roubellat, F. (1989). An approach for real
time scheduling for activities with time and resource
constraints. In R. Slowinski and J. Weglarz (eds.),
Advances in project scheduling. Elsevier.

Esswein, C. (2003). Un apport de flexibilité séquentielle
pour l’ordonnancement robuste. Thèse de doctorat,
Université François Rabelais Tours.

Graham, R.L., Lawler, E.L., Lenstra, J.K., and Rin-
nooy Kan, A.G.H. (1979). Optimization and approx-
imation in deterministic sequencing and scheduling: a
survey. Annals of Discrete Mathematics, 5, 287–326.

Lawler, E.L. (1973). Optimal sequencing of a single
machine subject to precedence constraints. Management
Science, 19(5), 544–546.

Lawrence, S. (1984). Resource constrained project schedul-
ing: an experimental investigation of heuristic schedul-
ing techniques (supplement). Technical report, Grad-
uate School of Industrial Administration, Carnegie-
Mellon University, Pittsburgh, Pennsylvania.

Pinot, G., Cardin, O., and Mebarki, N. (2007). A study
on the group sequencing method in regards with trans-
portation in an industrial FMS. In Proceedings of the
IEEE SMC 2007 International Conference.

Pinot, G. and Mebarki, N. (2008). Best-case lower bounds
in a group sequence for the job shop problem. In
Proceedings of the 17th IFAC World Congress.

Wu, S.D., Byeon, E.S., and Storer, R.H. (1999). A graph-
theoretic decomposition of the job shop scheduling prob-
lem to achieve scheduling robustness. Operations Re-
search, 47(1), 113–124.

1274

