
Spelling Correction in Context

Guillaume Pinot and Chantal Enguehard
Laboratoire d’Informatique de Nantes Atlantique (LINA)

Université de Nantes — 2, rue de la Houssinière — BP 92208
44322 Nantes Cedex 03 — FRANCE

http://www.sciences.univ-nantes.fr/lina/

guillaume.pinot@lina.univ-nantes.fr chantal.enguehard@univ-nantes.fr

Abstract

Spelling checkers, frequently used nowadays, do
not allow to correct real-word errors. Thus, the
erroneous replacement of dessert by desert is
not detected. We propose in this article an algo-
rithm based on the examination of the context
of words to correct this kind of spelling errors.
This algorithm uses a training on a raw corpus.

1 Introduction

Spell checkers distributed with text processing
such as MS Word or OpenOffice are based on the
use of a dictionary. The text is analyzed word by
word: each word which does not appear in the
dictionary is supposed to be erroneous so correc-
tions are proposed to the user. Paradoxically, the
performances of these checkers in error detection
are degraded with the increase in the size of the
dictionary because they are unable to detect real-
word errors.

These real-word errors occur when one or more
modifications of a word transform it into another
word which is present in the dictionary.

example : This chocolate cake is a fa-
mous desert.

The omission of an s in dessert reveals the word
desert. This error is not detected because desert
is present in the dictionary.

This problem was tackled during the second
half of the 90’s, in particular by Andrew R. Gold-
ing in (Golding 95) and (Golding & Schabes 96).
He defines confusing sets (like {desert ,dessert}
for example) and then determines by examining
the text which of these words is the best candi-
date. This method was used in other papers like
(Jones & Martin 97) and (Mangu & Brill 97).

First, we will explain our algorithm and then,
we will compare it with the method named context
word by Andrew R. Golding (Golding 95).

2 Simultaneous Detection and
Correction

Our algorithm detects and corrects the errors si-
multaneously.

During the examination of a word m, the algo-
rithm compares its probability of appearing in its
context with the probability that another word
m′ appears in the same context, m′ being close to
m in the sense of an arbitrary distance.

The context of a word is defined by the set of
the words present in a vicinity of fixed size in num-
ber of words. Considering that it is the semantic
aspect of a word which will guide the correction,
we make the assumption that the order of these
words is not important.

The probabilities are collected during the train-
ing part.

We now present the two distinct parts of our al-
gorithm: the computation of the contextual prob-
abilities and the error detection/correction pro-
cess.

3 Training

The training is made on a raw corpus. This algo-
rithm is parameterized by k: the number of words
around a word that constitute its context.

3.1 Reading the Corpus

The corpus is parsed word by word. Let wc be
the current word.

3.1.1 Constitution of the Dictionary

The goal is to index all the words appearing in
the corpus with their frequency.

Let D be the dictionary, composed of a set of
pairs Di = (wi, ci), wi being a word. Each wi

is unique. ci is the number of occurrences of the
word wi.

The constitution of the dictionary is processed
as follows:

• if Dc exists, cc is incremented.

1

• else, Dc = (wc, 1) is added to D.

Thus, we obtain the number of appearances of
each word in the corpus. This information will
allow to calculate various probabilities thereafter.

3.1.2 Context Dictionary C

Definition The context dictionary named C
gathers the co-occurrences of the words wi and
wj , the distance between these words being lower
or equal to k words. The word order is not taken
into account. Each co-occurrence is supplied with
its frequency fi,j :

C = {Ci,j / Ci,j = ({wi, wj}, fi,j)}

Algorithm The corpus is parsed word by word.
During the treatment of a word wc, the Cc,j with
j ∈ [c − k, c − 1] are calculated. They are the
k co-occurrences generated while combining wc

with the words appearing in a window of width k
preceding wc (see figure 1):

• if Cc,j exists, cc,j is incremented.

• else, Cc,j = ({wc, wj}, 1) is added to C.

We thus obtain all the 2-word sets located at a
distance lower or equal to k, and their frequencies.

Complexity Complexity in space is O(nk)
with n the size of the corpus in number of words.
In practice, it should be lower because of the re-
dundancy of words and co-occurrences.

Let O(f(x)) be the complexity of the search,
with x the size of the database in which the search
is processed. As the size of this base can be raised
by nk, complexity in time is O(nkf(n)).

3.2 Calculating the Probabilities

We use the data gathered during the parsing of
the corpus to calculate the probabilities of the
contexts kept in C.

Let B be the dictionary of the pairs of words
associated with their probability. We thus have:

Bi,j = ((wi, wj), P (wi|wj))

Bi,j and Bj,i are defined for each Ci,j . The
probability is calculated as follows:

P (wi|wj) =
ci,j

cj

4 Detection and Correction

4.1 Similarity Between Two Words

Let edist(wi, wj) be a function comparing two
strings and returning a positive number with the
condition

edist(wi, wj) = 0 ⇔ wi = wj

The largest edist(wi, wj) is, the most distant wi

is from wj .
The Aspell (Atkinson 05) distance function

takes in account the phonetic of words so it needs
a linguistic knowledge and depends on the tar-
get language. In this first version, we choose to
use the minimal edit distance (Wagner & Fischer
74) which is totally independent of the target lan-
guage. However, we slightly modified this func-
tion to reduce the cost of the inversion of letters.

To determine if a word is a plausible correction
of the word to be corrected, we use a sim(wi, wj)
function, which takes in arguments 2 words and
returns true if the 2 words are similar and false if
not.

Let ε be the empty string, we can define sim as
in figure 2.

In practice, we will take γ = 8 and c =
edist("a", ε). These values have been determined
after several experimentations.

4.2 Detection and Correction Algorithm

Let Kc be the context of a word wc. Kc is the set
of the 2k words located around wc, that is to say
the k words located before wc and the k words
located after wc (see figure 3).

Let wc be the word to correct. For each wj ∈
Kc, we constitute the set Fj such that

Fj = {Bi,j ∈ B|
sim(wc, wi) = true,
P (wi|wj) > P (wc|wj)}

We thus obtain 2k sets of propositions. The set
of the possible propositions, F , is the union of the
sets Fj (see example figure 4).

We now need a heuristic to give a score to each
proposition in order to have them in a pertinent
order. We here propose a first heuristic, but we
are also elaborating tests to refine it.

Let Gj be the subset of F such that

Gj = {Bi,j , Bi,j ∈ F}

2

Let k = 3 and c = 6
We can have a lot of money.
w1 w2 w3 w4 w5 w6 w7

w3, w4 and w5 are in the context of w6, that implies the sets {w3, w6}, {w4, w6}
and {w5, w6}.

Figure 1: Example of a Context During a Corpus Parsing

sim(wi, wj) =

{
true if edist(wi, wj) ≤ edist(wi,ε)+edist(wj ,ε)

k + c
false else

Figure 2: the sim(wi, wj) definition

Let k = 3 and c = 6
We can see that this is a very good dog.
w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

We here have w3, w4, w5, w7, w8 and w9 in the context of w6, that gives

K6 = {w3, w4, w5, w7, w8, w9}

Figure 3: Example of a Context During the Correction

Let k = 3 and wc = game
And so my mind game round to the business.

0.03086 0.01207 came 0.07317 0.01620 0.01571
same 0.00523
gate 0.00324 0.00305

0.00966 gave 0.00324 0.00174
0.00617 name 0.00087

game 0.00043

The numbers are P (wi|wj). For example P (round|came) = 0.07317

G1 = {((came, so), 0.03086), ((came,my), 0.01207), ((came, round), 0.07317),
((came, to), 0.01620), ((came, the), 0.01571)}

We do not detail G2, . . . , G6 which are built in the same way.
The heuristic gives the highest score to the first proposition came because it
appears 5 times.

For this example, we trained our algorithm on the novel The War of the Worlds
by H. G. Wells. The sentence came from The Time Machine by H. G. Wells
(Chapter 3) with the error added.

Figure 4: Propositions

3

One can then define the following Hj heuristic:

Hj = |Gj |+
∏

Bi,j∈Gj

P (wi|wj)

This heuristic favors the propositions appearing
in several sets of proposals Fj , then the strongest
probabilities (see example in figure 4).

5 Comparison with Other Works

This algorithm is close to the Context Words
Method by Andrew R. Golding (Golding 95).

5.1 The Context Words Method

In (Golding 95) like in other articles based on
it ((Jones & Martin 97), (Golding & Schabes
96) and (Mangu & Brill 97)), confusion sets
are used to correct real-word errors. A confu-
sion set is a set of words which can be confused
among each other, because of their close spellings
({dessert,desert}) or because they are often con-
fused ({between, among}).

During the training, a set of (wc, wi, P (wc|wi))
is created (with wc a word belonging to at least
one confusion set, wi any word). To correct a
word, the probabilities of all the words of the cor-
responding confusion sets are computed, the high-
est probability being proposed in correction.

5.2 Comparison of the Two Methods

These two methods are based on the same idea:
using the words present around the word to cor-
rect. They differ especially in the way of estab-
lishing sets and also in the nature of them:

• Golding supposes that its confusion sets are
preestablished.

We automatically determine words which can
be confused during the correction process.
This selection is based on the corpus itself
and on our similarity function.

• The Golding’s confusion sets are disjoint
(their intersections are empty).

This is not the case in our method: for each
word wi, we determine automatically a list
of words that are similar to wi and which
occur in the same context of the words cooc-
curring with wi. The list established for wi

and the list established for wj (wi 6= wj) can
encounter some words in commom.

6 Experimentations

6.1 Corpus

We would have liked to experiment our method on
the same corpus as Golding in order to compare
fruitfully our results with those he has obtained.
Unfortunately, the Brown corpus used by Golding
is not free, so we could not perform our algorithm
on it.

So, our experiments on this spelling checker use
the novel les Misérables by Victor Hugo. This
corpus is divided into two parts: the training
part (480588 words) and the part to be corrected
(53405 words) in which errors have been added.

6.2 Experimental Method

We performe the correction and then generate the
precision and the recall on the detection of error
as well as the precision on correction (see figure 5
for the formulas).

6.3 Adding Errors

Real-word errors are previously added automati-
cally without using any external resource.

This introduction is done in two steps: first the
generation of the possible errors, then the intro-
duction of these errors in the text.

6.3.1 Generation of the Possible Errors
Let D be a simple dictionary (a set of word).

For each word wi ∈ D, we associate a set of words
included in D and close to wi (in the sense of
our similarity function). This method generates
a base which can be used to generate real-word
errors.

In practice, we use as dictionary the words ap-
pearing more than ten times in les Misérables to
select errors using words whose context is known
by our corrector. Errors on low frequency words
(like apax) could not be detected in such exper-
imentations because their context is completely
unknown.

6.3.2 Adding Real-word Errors
Two parameters control the introduction of

real-word errors: the density of inserted errors
and the previously determined possible errors.

Errors are located using a XML tag which keeps
the original word (this is the correction we wish
to find).

Example: we introduce the word “game” in-
stead of “came” in the text “And so my mind
came round to the business.”:

4

Precision on detection =
Number of words rightly detected as being erroneous

Number of words detected as being erroneous

Recall on detection =
Number of words rightly detected as being erroneous

Number of words rightly detected

Precision on correction =
Number of correctly corrected words

Number of words rightly detected as being erroneous

Figure 5: Formulas of the precision and the recall

And so my mind
<error correction="came">game</error>
round to the business.

Each word of the corpus is affected or not by
an error according to the probability of error fixed
by the wished density.

6.4 Results

A summary of the results is given in the table 1.

Density Precision Recall P. on correction
10% 0.1081926 0.9363030 0.9622054
1% 0.0206164 0.9615384 0.9500000

Table 1: Results

We note that the precision on detection is very
bad. This overdetection of our algorithm is prob-
lematic.

On the other hand, we obtain a very good recall
on detection and the precision of the correction is
more than 95%. The correction in itself is thus
very efficient.

7 Conclusion

We have presented here an algorithm that uses
non-ordered contexts to detect and correct real-
word errors.

The advantages of this algorithm are:

• simplicity;

• independence from any linguistic informa-
tion;

• use of a raw corpus for the training;

• few parameters have to be regulated.

The disadvantages are:

• the significant size of the data generated by
the training.

• the low precision on detection: the algo-
rithm proposes corrections for a lot of correct
words.

Our algorithm is intended to be used during the
interactive correction of a text so its speed should
be sufficient. On the other hand, the overdetec-
tion of errors constitutes a real problem.

We thus direct our research towards the def-
inition of better heuristics of scheduling of the
propositions. The size of the training corpus may
also influence the quality of the results, its influ-
ence should be observed. We also plan to define
ordered contexts to use the syntax in addition to
semantics.

These various methods will be precisely eval-
uated on the same corpus to analyze their rele-
vance.

References
(Atkinson 05) Kevin Atkinson. GNU Aspell. http://aspell.net/,

2005.

(Golding & Schabes 96) Andrew R. Golding and Yves Sch-
abes. Combining trigram-based and feature-based methods for
context-sensitive spelling correction. In Proceedings of the
34th conference on Association for Computational Linguistics,
pages 71–78. Association for Computational Linguistics, 1996.

(Golding 95) Andrew R. Golding. A bayesian hybrid method for
context-sensitive spelling correction. CoRR, cmp-lg/9606001,
1995.

(Jones & Martin 97) Michael P. Jones and James H. Martin. Con-
textual spelling correction using latent semantic analysis. In
Proceedings of the fifth conference on Applied natural language
processing, pages 166–173. Morgan Kaufmann Publishers Inc.,
1997.

(Mangu & Brill 97) Lidia Mangu and Eric Brill. Automatic rule
acquisition for spelling correction. In ICML ’97: Proceedings of
the Fourteenth International Conference on Machine Learning,
pages 187–194. Morgan Kaufmann Publishers Inc., 1997.

(Wagner & Fischer 74) Robert A. Wagner and Michael J. Fischer.
The string-to-string correction problem. J. ACM, 21(1):168–173,
1974.

5

