A Study on the Group Sequencing Method in Regards with Transportation in an Industrial FMS

Guillaume Pinot Olivier Cardin Nasser Mebarki

> IRCCyN — UMR CNRS 6597 Nantes, France firstname.lastname@irccyn.ec-nantes.fr

> > IEEE SMC 2007

Table of Contents

- Introduction
- ② Group Sequencing
- 3 Adaptation of Group Sequencing on a FMS
- 4 Experiments
- Conclusion

Table of Contents

- Introduction

Flexible Manufacturing System: designed to combine high productivity and production flexibility.

Flexible Manufacturing System: designed to combine high productivity and production flexibility. Job shop problem: a model used to

optimize the performance of FMS.

Flexible Manufacturing System: designed to combine high productivity and production flexibility.

Job shop problem: a model used to

optimize the performance of FMS. The job shop model is a simplified model of FMS: differences exist between model and reality, the uncertainties (transportation, processing times that may be variable, etc.).

Group Sequencing can be a solution to this drawback: it gives sequential flexibility to the job shop solution that allows to absorb some of the uncertainties.

Flexible Manufacturing System: designed to combine high productivity and production flexibility.

Job shop problem: a model used to optimize the performance of FMS.

The job shop model is a simplified model of FMS: differences exist between model and reality, the uncertainties (transportation, processing times that may be variable, etc.).

Group Sequencing can be a solution to this drawback: it gives sequential flexibility to the job shop solution that allows to absorb some of the uncertainties.

Table of Contents

- 2 Group Sequencing

Group Sequencing

Groups of permutable operations were first introduced in [Erschler and Roubellat, 1989]. The goal of this method is to have a sequential flexibility during the execution of the schedule and to guarantee a minimal quality corresponding to the worst case. For a theoretical description of the method, see [Artigues et al., 2005].

Group Sequencing

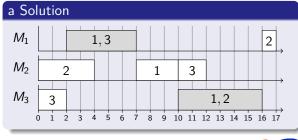
Groups of permutable operations were first introduced in [Erschler and Roubellat, 1989]. The goal of this method is to have a sequential flexibility during the execution of the schedule and to guarantee a minimal quality corresponding to the worst case. For a theoretical description of the method, see [Artigues et al., 2005]. To manage sequential flexibility, this method uses "groups of permutable operations."

Example: a Job Shop Problem

i represents a job, j an operation, $M_{i,j}$ the resource needed by the operation j from job i, and $p_{i,j}$ the processing time needed by the operation *j* from job *i*.

Problem

i	j	$M_{i,j}$	$p_{i,j}$
1	1	1	3
1	2	2	3
1 1 2 2 2 2 3 3 3	1 2 3	1 2 3 2 3 1 3 1	$ \begin{array}{c} p_{i,j} \\ 3 \\ 3 \\ 3 \\ 4 \\ 3 \\ 1 \\ 2 \\ 2 \\ 2 \end{array} $
2	1	2	4
2	2	3	3
2	1 2 3	1	1
3		3	2
3	1 2 3	1	2
3	3	2	2

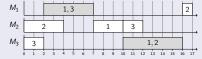


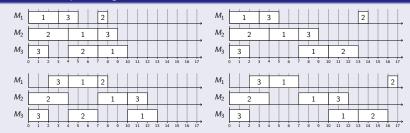
Example: a Job Shop Problem

i represents a job, j an operation, $M_{i,j}$ the resource needed by the operation j from job i, and $p_{i,j}$ the processing time needed by the operation j from job i.

Problem

i	j	$M_{i,j}$	$p_{i,j}$
1	1	1	3
1	1 2 3	2	3
1 1 2 2 2 2 3 3 3	3	1 2 3 2 3	3 3 3
2	1	2	4
2	2		3
2	3	3	1 2 2 2
3	1	3	2
3	1 2 3	1	2
3	3	2	2





Execution of the Example

The Corresponding Semi-Active Schedules

- predictive reactive method;

- predictive reactive method;
- flexibility on sequences;
- evaluation of the group sequence in the worst case in polynomial time for minmax regular objectives as C_{max} and L_{max} ;
- widely studied in the last twenty years:
 [Erschler and Roubellat, 1989, Billaut and Roubellat, 1996
 Wu et al., 1999, Artigues et al., 2005]
- no need to model the uncertainties
- the method is able to absorb some uncertainties:
 [Wu et al., 1999, Esswein, 2003] and this presentation

- predictive reactive method;
- flexibility on sequences;
- evaluation of the group sequence in the worst case in

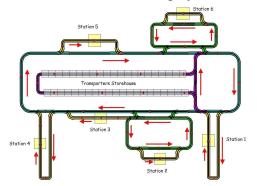
- predictive reactive method;
- flexibility on sequences;
- evaluation of the group sequence in the worst case in polynomial time for minmax regular objectives as C_{max} and L_{max} ;
- widely studied in the last twenty years:
 [Erschler and Roubellat, 1989, Billaut and Roubellat, 1996,
 Wu et al., 1999, Artigues et al., 2005]
- no need to model the uncertainties
- the method is able to absorb some uncertainties: [Wu et al., 1999, Esswein, 2003] and this presentation

- predictive reactive method;
- flexibility on sequences;
- evaluation of the group sequence in the worst case in polynomial time for minmax regular objectives as C_{max} and L_{max} ;
- widely studied in the last twenty years: Erschler and Roubellat, 1989, Billaut and Roubellat, 1996, Wu et al., 1999, Artigues et al., 2005]

- predictive reactive method;
- flexibility on sequences;
- evaluation of the group sequence in the worst case in polynomial time for minmax regular objectives as C_{max} and L_{max} ;
- widely studied in the last twenty years: Erschler and Roubellat, 1989, Billaut and Roubellat, 1996, Wu et al., 1999, Artigues et al., 2005]
- no need to model the uncertainties;
- the method is able to absorb some uncertainties:

- predictive reactive method;
- flexibility on sequences;
- evaluation of the group sequence in the worst case in polynomial time for minmax regular objectives as C_{max} and L_{max} ;
- widely studied in the last twenty years: Erschler and Roubellat, 1989, Billaut and Roubellat, 1996, Wu et al., 1999, Artigues et al., 2005]
- no need to model the uncertainties;
- the method is able to absorb some uncertainties: [Wu et al., 1999, Esswein, 2003] and this presentation.

Table of Contents


- Introduction
- 2 Group Sequencing
- 3 Adaptation of Group Sequencing on a FMS
- 4 Experiments
- Conclusion

The Flexible Manufacturing System under Study

The Flexible Manufacturing System:

A Job shop with transportation.

Group Sequencing:

- Every station keeps up to date a group sequence of operations to execute;
- A station accepts an operation only if it is included into the current group;
- When a group is empty, the station changes to the next group.

Table of Contents

- Introduction
- 2 Group Sequencing
- 3 Adaptation of Group Sequencing on a FMS
- 4 Experiments
- Conclusion

We use la14, a job shop problem with no transportation.

Different executions:

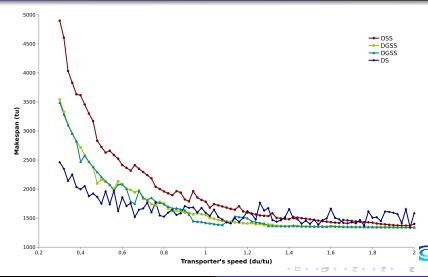
- OSS: A predictive schedule that is an optimal solution for the problem without transportation time. The quality is $C_{\rm max}=1292$. The sequence of operations on each machine are given by the schedule.
- OGSS: A predictive-reactive schedule that is a group sequence where the quality of all semi-active schedules are $C_{\text{max}} = 1292$.
- DGSS: A predictive-reactive schedule that is a group sequence where the worst-case quality is $C_{\rm max}=1382$ and the best-case quality is $C_{\rm max}=1292$ with more flexibility than OGSS.

We use la14, a job shop problem with no transportation. Different executions:

- OSS: A predictive schedule that is an optimal solution for the problem without transportation time. The quality is $C_{\rm max}=1292$. The sequence of operations on each machine are given by the schedule.
- OGSS: A predictive-reactive schedule that is a group sequence where the quality of all semi-active schedules are $C_{\text{max}} = 1292$.
- DGSS: A predictive-reactive schedule that is a group sequence where the worst-case quality is $C_{\rm max}=1382$ and the best-case quality is $C_{\rm max}=1292$ with more flexibility than OGSS. DS: A reactive schedule, using the FJFO rule.

We use la14, a job shop problem with no transportation. Different executions:

- OSS: A predictive schedule that is an optimal solution for the problem without transportation time. The quality is $C_{\text{max}} = 1292$. The sequence of operations on each machine are given by the schedule.
- OGSS: A predictive-reactive schedule that is a group sequence where the quality of all semi-active schedules are $C_{\text{max}} = 1292$.
- DS: A reactive schedule, using the FJEQ rule.


We use la14, a job shop problem with no transportation. Different executions:

- OSS: A predictive schedule that is an optimal solution for the problem without transportation time. The quality is $C_{\rm max}=1292$. The sequence of operations on each machine are given by the schedule.
- OGSS: A predictive-reactive schedule that is a group sequence where the quality of all semi-active schedules are $C_{\text{max}} = 1292$.
- DGSS: A predictive-reactive schedule that is a group sequence where the worst-case quality is $C_{\rm max}=1382$ and the best-case quality is $C_{\rm max}=1292$ with more flexibility than OGSS.

We use la14, a job shop problem with no transportation. Different executions:

- OSS: A predictive schedule that is an optimal solution for the problem without transportation time. The quality is $C_{\text{max}} = 1292$. The sequence of operations on each machine are given by the schedule.
- OGSS: A predictive-reactive schedule that is a group sequence where the quality of all semi-active schedules are $C_{\text{max}} = 1292$.
- DGSS: A predictive-reactive schedule that is a group sequence where the worst-case quality is $C_{\rm max}=1382$ and the best-case quality is $C_{\text{max}} = 1292$ with more flexibility than OGSS.
 - DS: A reactive schedule, using the FIFO rule.

Results

Table of Contents

- Introduction
- 2 Group Sequencing
- 3 Adaptation of Group Sequencing on a FMS
- 4 Experiments
- 6 Conclusion

We presented:

- the problem of scheduling under uncertainties;
- group sequencing;
- a use of group sequencing on an FMS;
- the effectiveness of group sequencing on an FMS in regards with transportation.

We presented:

- the problem of scheduling under uncertainties;
- group sequencing;
- a use of group sequencing on an FMS;
- the effectiveness of group sequencing on an FMS in regards with transportation.

We presented:

- the problem of scheduling under uncertainties;
- group sequencing;
- a use of group sequencing on an FMS;
- the effectiveness of group sequencing on an FMS in regards with transportation.

We presented:

- the problem of scheduling under uncertainties;
- group sequencing;
- a use of group sequencing on an FMS;
- the effectiveness of group sequencing on an FMS in regards with transportation.

We presented:

- the problem of scheduling under uncertainties;
- group sequencing;
- a use of group sequencing on an FMS;
- the effectiveness of group sequencing on an FMS in regards with transportation.

Bibliography I

- Artigues, C., Billaut, J.-C., and Esswein, C. (2005). Maximization of solution flexibility for robust shop scheduling. *European Journal of Operational Research*, 165(2):314–328.
 - Billaut, J.-C. and Roubellat, F. (1996).

 A new method for workshop real-time scheduling.

 International Journal of Production Research,
 34(6):1555–1579.
- Erschler, J. and Roubellat, F. (1989).
 An approach for real time scheduling for activities with time and resource constraints.
 - In Slowinski, R. and Weglarz, J., editors, *Advances in project scheduling*. Elsevier.

Bibliography II

Un apport de flexibilité séquentielle pour l'ordonnancement robuste.

Thèse de doctorat, Université François Rabelais Tours.

Wu, S. D., Byeon, E.-S., and Storer, R. H. (1999).

A graph-theoretic decomposition of the job shop scheduling problem to achieve scheduling robustness.

Operations Research, 47(1):113–124.

